{"title":"From dual-mode to multi-modal electrochemical based sensors: A path toward accurate sensing","authors":"Wafa Aidli , Daniele Fumagalli , Valentina Pifferi , Luigi Falciola","doi":"10.1016/j.coelec.2025.101655","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the chemical sensing field has seen the rise of a new class of sensors that utilize more than unique transduction modes. Known as ‘dual-mode’ or ‘bimodal’ sensors, these devices integrate two distinct mechanisms within the same platform, providing separate signals to detect or quantify the same analyte. This approach offers built-in cross-validation, significantly enhancing the precision and accuracy of the sensors. These self-checked systems have unlocked the potential of nanomaterials with versatile properties, enabling their simultaneous use across various sensing mechanisms. Electrochemical sensors, in particular, have leveraged this approach, leading to the development of dual-mode electrochemical-based sensors that pair electrochemistry with techniques such as Colorimetry, Fluorescence, Photoelectrochemistry, or even two different Electrochemical methods. The evolution of these technologies has also led to the emergence of multi-modal sensors, incorporating more than two modes within a single system. This review explores the latest advancements in multi-modal electrochemical-based sensors, examining their design strategies and highlighting recent work published in this evolving field.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101655"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000146","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the chemical sensing field has seen the rise of a new class of sensors that utilize more than unique transduction modes. Known as ‘dual-mode’ or ‘bimodal’ sensors, these devices integrate two distinct mechanisms within the same platform, providing separate signals to detect or quantify the same analyte. This approach offers built-in cross-validation, significantly enhancing the precision and accuracy of the sensors. These self-checked systems have unlocked the potential of nanomaterials with versatile properties, enabling their simultaneous use across various sensing mechanisms. Electrochemical sensors, in particular, have leveraged this approach, leading to the development of dual-mode electrochemical-based sensors that pair electrochemistry with techniques such as Colorimetry, Fluorescence, Photoelectrochemistry, or even two different Electrochemical methods. The evolution of these technologies has also led to the emergence of multi-modal sensors, incorporating more than two modes within a single system. This review explores the latest advancements in multi-modal electrochemical-based sensors, examining their design strategies and highlighting recent work published in this evolving field.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •