Esaie Naroum , Ebenezer Maka Maka , Hamadjam Abboubakar , Paul Dayang , Appolinaire Batoure Bamana , Benjamin Garga , Hassana Daouda Daouda , Mohsen Bakouri , Ilyas Khan
{"title":"Comparative analysis of deep learning and machine learning techniques for forecasting new malaria cases in Cameroon’s Adamaoua region","authors":"Esaie Naroum , Ebenezer Maka Maka , Hamadjam Abboubakar , Paul Dayang , Appolinaire Batoure Bamana , Benjamin Garga , Hassana Daouda Daouda , Mohsen Bakouri , Ilyas Khan","doi":"10.1016/j.ibmed.2025.100220","DOIUrl":null,"url":null,"abstract":"<div><div>The Plasmodium parasite, which causes malaria is transmitted by Anopheles mosquitoes, and remains a major development barrier in Africa. This is particularly true considering the conducive environment that promotes the spread of malaria. This study examines several machine learning approaches, such as long short term memory (LSTM), random forests (RF), support vector machines (SVM), and data regularization models including Ridge, Lasso, and ElasticNet, in order to forecast the occurrence of malaria in the Adamaoua region of Cameroon. The LSTM, a recurrent neural network variant, performed the best with 76% accuracy and a low error rate (RMSE = 0.08). Statistical evidence indicates that temperatures exceeding 34 degrees halt mosquito vector reproduction, thereby slowing the spread of malaria. However, humidity increases the morbidity of the condition. The survey also identified high-risk areas in Ngaoundéré Rural and Urban and Meiganga. Between 2018 and 2022, the Adamaoua region had 20.1%, 12.3%, and 10.0% of malaria cases, respectively, in these locations. According to the estimate, the number of malaria cases in the Adamaoua region will rise gradually between 2023 and 2026, peaking in 2029 before declining in 2031.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100220"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Plasmodium parasite, which causes malaria is transmitted by Anopheles mosquitoes, and remains a major development barrier in Africa. This is particularly true considering the conducive environment that promotes the spread of malaria. This study examines several machine learning approaches, such as long short term memory (LSTM), random forests (RF), support vector machines (SVM), and data regularization models including Ridge, Lasso, and ElasticNet, in order to forecast the occurrence of malaria in the Adamaoua region of Cameroon. The LSTM, a recurrent neural network variant, performed the best with 76% accuracy and a low error rate (RMSE = 0.08). Statistical evidence indicates that temperatures exceeding 34 degrees halt mosquito vector reproduction, thereby slowing the spread of malaria. However, humidity increases the morbidity of the condition. The survey also identified high-risk areas in Ngaoundéré Rural and Urban and Meiganga. Between 2018 and 2022, the Adamaoua region had 20.1%, 12.3%, and 10.0% of malaria cases, respectively, in these locations. According to the estimate, the number of malaria cases in the Adamaoua region will rise gradually between 2023 and 2026, peaking in 2029 before declining in 2031.