The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-02-04 DOI:10.1016/j.aquatox.2025.107269
Feifan Wu , Xiangjie Pan , Yuhao Zhou , Yan Zhu , Kai Liu , Wei Li , Jiangang Han
{"title":"The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa","authors":"Feifan Wu ,&nbsp;Xiangjie Pan ,&nbsp;Yuhao Zhou ,&nbsp;Yan Zhu ,&nbsp;Kai Liu ,&nbsp;Wei Li ,&nbsp;Jiangang Han","doi":"10.1016/j.aquatox.2025.107269","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on <em>Chlorella pyrenoidosa</em> was illustrated based on the physiological–biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of <em>C. pyrenoidosa</em> at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"280 ","pages":"Article 107269"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000347","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on Chlorella pyrenoidosa was illustrated based on the physiological–biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of C. pyrenoidosa at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Antibacterials exert toxic effects on aquatic organisms by inhibiting respiration, inducing oxidative stress, mitochondrial dysfunction and autophagy Influence of CYP1A and AhR modulation on polycyclic aromatic hydrocarbon-induced developmental defects in Japanese medaka The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa Vitamin C alleviates intestinal damage induced by 17α-methyltestosterone in Carassius auratus Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1