Insights into temporal changes in debris flow susceptibility following fire in the Southwest USA from monitoring and repeat estimates of soil hydraulic and physical properties

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Processes and Landforms Pub Date : 2025-02-11 DOI:10.1002/esp.70015
Joseph R. Martinez, Luke A. McGuire, Ann M. Youberg
{"title":"Insights into temporal changes in debris flow susceptibility following fire in the Southwest USA from monitoring and repeat estimates of soil hydraulic and physical properties","authors":"Joseph R. Martinez,&nbsp;Luke A. McGuire,&nbsp;Ann M. Youberg","doi":"10.1002/esp.70015","DOIUrl":null,"url":null,"abstract":"<p>Wildfire influences geomorphic process rates, increasing the potential for runoff-generated debris flows in steep watersheds. Runoff-generated postfire debris flows (PFDFs) often initiate when overland flow rapidly mobilizes sediment from steep hillslopes and channels. Fire effects on soil hydraulic properties, including their magnitude and temporal persistence, can therefore play an influential role in determining the degree to which fire increases debris-flow potential and the time period for heightened debris-flow hazards following fire. There is a paucity of measurements that quantify the timing of changes in soil hydraulic properties throughout the first 1–2 years after fire. Here, we monitored rainfall and debris-flow activity in two watersheds burned by the 2022 Contreras Fire in Arizona, USA, over the first 1.5 years following fire. We quantified changes in soil hydraulic properties during 11 site visits using in-situ measurements with a tension infiltrometer to provide insight into the temporal persistence of heightened debris-flow hazards. Specifically, we estimated field-saturated hydraulic conductivity (<i>K</i><sub><i>fs</i></sub>), wetting front potential (<i>h</i><sub><i>f</i></sub>) and sorptivity (<i>S</i>). We further tracked changes in soil water repellency, ground cover and soil physical and chemical properties, including bulk density, carbon and organic matter content to help explain temporal trends in soil hydraulic properties. Seasonal variations in <i>K</i><sub><i>fs</i></sub>, <i>h</i><sub><i>f</i></sub> and <i>S</i> were substantial, leading to non-monotonic relationships between these properties and time since fire. Rainfall-runoff modelling demonstrates that the magnitude of these seasonal changes are sufficient to influence runoff ratios and suggest postfire debris-flow susceptibility could change over timescales as short as several months. A comparison of <i>K</i><sub><i>fs</i></sub>, <i>h</i><sub><i>f</i></sub> and <i>S</i> at similar times during the first and second postfire years indicates that <i>K</i><sub><i>fs</i></sub> <i>h</i><sub><i>f</i></sub> and <i>S</i> decreased immediately following the fire. We observed two debris flows, which occurred during the first three months after the fire. The relatively short time associated with notable fire effects on soil hydraulic properties, combined with substantial increases in ground cover during the first postfire year, help explain observations that PFDFs primarily initiate in the first rainy season following fire in the Southwest USA.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70015","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfire influences geomorphic process rates, increasing the potential for runoff-generated debris flows in steep watersheds. Runoff-generated postfire debris flows (PFDFs) often initiate when overland flow rapidly mobilizes sediment from steep hillslopes and channels. Fire effects on soil hydraulic properties, including their magnitude and temporal persistence, can therefore play an influential role in determining the degree to which fire increases debris-flow potential and the time period for heightened debris-flow hazards following fire. There is a paucity of measurements that quantify the timing of changes in soil hydraulic properties throughout the first 1–2 years after fire. Here, we monitored rainfall and debris-flow activity in two watersheds burned by the 2022 Contreras Fire in Arizona, USA, over the first 1.5 years following fire. We quantified changes in soil hydraulic properties during 11 site visits using in-situ measurements with a tension infiltrometer to provide insight into the temporal persistence of heightened debris-flow hazards. Specifically, we estimated field-saturated hydraulic conductivity (Kfs), wetting front potential (hf) and sorptivity (S). We further tracked changes in soil water repellency, ground cover and soil physical and chemical properties, including bulk density, carbon and organic matter content to help explain temporal trends in soil hydraulic properties. Seasonal variations in Kfs, hf and S were substantial, leading to non-monotonic relationships between these properties and time since fire. Rainfall-runoff modelling demonstrates that the magnitude of these seasonal changes are sufficient to influence runoff ratios and suggest postfire debris-flow susceptibility could change over timescales as short as several months. A comparison of Kfs, hf and S at similar times during the first and second postfire years indicates that Kfs hf and S decreased immediately following the fire. We observed two debris flows, which occurred during the first three months after the fire. The relatively short time associated with notable fire effects on soil hydraulic properties, combined with substantial increases in ground cover during the first postfire year, help explain observations that PFDFs primarily initiate in the first rainy season following fire in the Southwest USA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
期刊最新文献
Paleoenvironmental context of fluvial soils in the dryest region of Brazilian semiarid Effects of vegetation expansion on morphodynamics of tidal channel networks Downstream fining of fluvial gravels along the eastern Tibetan Plateau rivers Distinguishing the effects of vegetation characteristics on soil erosion process on the loess plateau of China Spatiotemporal changes of desertification areas in the Alxa Desert obtained from satellite imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1