Asif Ashraf, Emilie E. E. Hooft, Douglas R. Toomey, Anne M. Tréhu, Sarah Nolan, Erin A. Wirth, Kevin M. Ward
{"title":"A High-Resolution 3-D P-Wave Velocity Structure of the South-Central Cascadia Subduction Zone From Wide-Angle Shore-Crossing Seismic Refraction Data","authors":"Asif Ashraf, Emilie E. E. Hooft, Douglas R. Toomey, Anne M. Tréhu, Sarah Nolan, Erin A. Wirth, Kevin M. Ward","doi":"10.1029/2024JB029525","DOIUrl":null,"url":null,"abstract":"<p>This study addresses a significant gap in understanding the features of the south-central Cascadia subduction zone, a region characterized by complex geologic, tectonic, and seismic transitions both offshore and onshore. Unlike other segments along this margin, this area lacks a 3-D velocity model to delineate its structural and geological features on a fine scale. To address this void, we developed a high-resolution 3-D P-wave velocity model using active source seismic data from ship-borne seismic shots recorded on temporary and permanent onshore seismic stations and ocean-bottom seismometers. Our model shows velocity variations across the region with distinct velocity-depth profiles for the Siletz, Franciscan, and Klamath terranes in the overlying plate. We identified seaward dipping high-velocity static backstops associated with the Siletz and Klamath terranes, situated near the shoreline and further inland, respectively. Regions of reduced crustal velocity are associated with crustal faults. Moreover, there is significant along-strike depth variation in the subducting slab, which is about 4 km deeper near the thick, dense Siletz terrane and becomes shallower near the predominantly less-dense Franciscan terrane. This highlights a sudden tectonic and geologic transition at the southern boundary of the Siletz terrane. Our velocity model also indicates slightly increased hydration, though still minimal, in both the oceanic crust and the upper mantle of the subducting plate compared to other parts of the margin.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029525","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a significant gap in understanding the features of the south-central Cascadia subduction zone, a region characterized by complex geologic, tectonic, and seismic transitions both offshore and onshore. Unlike other segments along this margin, this area lacks a 3-D velocity model to delineate its structural and geological features on a fine scale. To address this void, we developed a high-resolution 3-D P-wave velocity model using active source seismic data from ship-borne seismic shots recorded on temporary and permanent onshore seismic stations and ocean-bottom seismometers. Our model shows velocity variations across the region with distinct velocity-depth profiles for the Siletz, Franciscan, and Klamath terranes in the overlying plate. We identified seaward dipping high-velocity static backstops associated with the Siletz and Klamath terranes, situated near the shoreline and further inland, respectively. Regions of reduced crustal velocity are associated with crustal faults. Moreover, there is significant along-strike depth variation in the subducting slab, which is about 4 km deeper near the thick, dense Siletz terrane and becomes shallower near the predominantly less-dense Franciscan terrane. This highlights a sudden tectonic and geologic transition at the southern boundary of the Siletz terrane. Our velocity model also indicates slightly increased hydration, though still minimal, in both the oceanic crust and the upper mantle of the subducting plate compared to other parts of the margin.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.