{"title":"Development of hydrophobic catalysts for reducing the CO<sub>2</sub> emission during the conversion of syngas into chemicals and fuels.","authors":"Yanfei Xu, Mingyue Ding","doi":"10.1039/d4cs00731j","DOIUrl":null,"url":null,"abstract":"<p><p>Syngas conversion is a key process for the production of chemicals and fuels from non-petroleum resources, such as biomass, coal, and natural gas. Water produced during syngas conversion can not only boost the production of CO<sub>2</sub> by-products <i>via</i> inducing the water-gas shift side reaction, but also inhibit the conversion of CO by occupying the active sites on the catalyst, leading to high CO<sub>2</sub> emission and low carbon utilization efficiency. Reducing CO<sub>2</sub> emission during syngas conversion is a main development direction of the energy chemical industry toward the goal of carbon neutrality. It has been reported that hydrophobic modification can reduce a surface's affinity to water molecules, and many breakthroughs in the development of hydrophobic catalysts for weakening the negative effect of water on syngas conversion have been made recently. A rapidly growing number of studies have demonstrated the versatility of hydrophobic catalysts. In this review, we systematically summarize and discuss the development of hydrophobic catalysts in syngas chemistry since the 2000s. These hydrophobic catalysts can be divided into three categories, <i>i.e.</i>, catalysts with hydrophobic surfaces, catalysts with hydrophobic supports, and catalysts physically mixed with hydrophobic promoters. Different categories of hydrophobic catalysts play different roles in syngas conversion. The perspectives and challenges for the future design of hydrophobic catalysts are also discussed.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00731j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Syngas conversion is a key process for the production of chemicals and fuels from non-petroleum resources, such as biomass, coal, and natural gas. Water produced during syngas conversion can not only boost the production of CO2 by-products via inducing the water-gas shift side reaction, but also inhibit the conversion of CO by occupying the active sites on the catalyst, leading to high CO2 emission and low carbon utilization efficiency. Reducing CO2 emission during syngas conversion is a main development direction of the energy chemical industry toward the goal of carbon neutrality. It has been reported that hydrophobic modification can reduce a surface's affinity to water molecules, and many breakthroughs in the development of hydrophobic catalysts for weakening the negative effect of water on syngas conversion have been made recently. A rapidly growing number of studies have demonstrated the versatility of hydrophobic catalysts. In this review, we systematically summarize and discuss the development of hydrophobic catalysts in syngas chemistry since the 2000s. These hydrophobic catalysts can be divided into three categories, i.e., catalysts with hydrophobic surfaces, catalysts with hydrophobic supports, and catalysts physically mixed with hydrophobic promoters. Different categories of hydrophobic catalysts play different roles in syngas conversion. The perspectives and challenges for the future design of hydrophobic catalysts are also discussed.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences