High-Impulse, Modular, 3D-Printed CubeSat Electrospray Thrusters Throttleable via Pressure and Voltage Control.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-02-11 DOI:10.1002/advs.202413706
Hyeonseok Kim, Luis Fernando Velásquez-García
{"title":"High-Impulse, Modular, 3D-Printed CubeSat Electrospray Thrusters Throttleable via Pressure and Voltage Control.","authors":"Hyeonseok Kim, Luis Fernando Velásquez-García","doi":"10.1002/advs.202413706","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the proof-of-concept demonstration of novel, additively manufactured, droplet-emitting electrospray emitter arrays for CubeSat thruster applications. The modular thruster design incorporates multiscale features by employing two different vat photopolymerization technologies, i.e., digital light processing for defining mesoscale features, and two-photon polymerization for creating microscale features. The thruster design includes optimized, 50 µm-diameter microfluidic channels to attain uniform emitter array operation. Devices with up to 8 modules of 4 emitters were tested in a vacuum to assess their performance. Stable and uniform electrospray emission was achieved across all emitters, with a near 100% transmission across the extractor. Both pressure (flow rate) and voltage modulation are investigated as methods for controlling the emitted current and, by extension, the thrust generated by the devices. The per-emitter current followed a well-known square root relationship with flow rate; in addition, a linear relationship between per-emitter current and extractor voltage is observed. Compared to pressure control, modulating thrust via voltage control simplifies system design, eliminating the need for complex valves and enabling a wider throttle range. Estimated thrust and specific impulse are comparable to, or better than reported droplet-emitting electrospray thrusters. These findings demonstrate the potential of additive manufacturing to implement electrospray propulsion hardware.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413706"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the proof-of-concept demonstration of novel, additively manufactured, droplet-emitting electrospray emitter arrays for CubeSat thruster applications. The modular thruster design incorporates multiscale features by employing two different vat photopolymerization technologies, i.e., digital light processing for defining mesoscale features, and two-photon polymerization for creating microscale features. The thruster design includes optimized, 50 µm-diameter microfluidic channels to attain uniform emitter array operation. Devices with up to 8 modules of 4 emitters were tested in a vacuum to assess their performance. Stable and uniform electrospray emission was achieved across all emitters, with a near 100% transmission across the extractor. Both pressure (flow rate) and voltage modulation are investigated as methods for controlling the emitted current and, by extension, the thrust generated by the devices. The per-emitter current followed a well-known square root relationship with flow rate; in addition, a linear relationship between per-emitter current and extractor voltage is observed. Compared to pressure control, modulating thrust via voltage control simplifies system design, eliminating the need for complex valves and enabling a wider throttle range. Estimated thrust and specific impulse are comparable to, or better than reported droplet-emitting electrospray thrusters. These findings demonstrate the potential of additive manufacturing to implement electrospray propulsion hardware.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
A Gallbladder-Specific Hydrophobic Bile Acid-FXR-MUC1 Signaling Axis Mediates Cholesterol Gallstone Formation. Effectiveness and Safety of Oral Azvudine for Elderly Hospitalized Patients With COVID-19: A Multicenter, Retrospective, Real-World Study. GhLPF1 Associated Network Is Involved with Cotton Lint Percentage Regulation Revealed by the Integrative Analysis of Spatial Transcriptome. High-Impulse, Modular, 3D-Printed CubeSat Electrospray Thrusters Throttleable via Pressure and Voltage Control. Artificial Intelligence-Based Approaches for AAV Vector Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1