{"title":"Artificial Intelligence-Based Approaches for AAV Vector Engineering.","authors":"Fangzhi Tan, Yue Dong, Jieyu Qi, Wenwu Yu, Renjie Chai","doi":"10.1002/advs.202411062","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated virus (AAV) has emerged as a leading vector for gene therapy due to its broad host range, low pathogenicity, and ability to facilitate long-term gene expression. However, AAV vectors face limitations, including immunogenicity and insufficient targeting specificity. To enhance the efficacy of gene therapy, researchers have been modifying the AAV vector using various methods. Traditional experimental approaches for optimizing AAV vector are often time-consuming, resource-intensive, and difficult to replicate. The advancement of artificial intelligence (AI), particularly machine learning, offers significant potential to accelerate capsid optimization while reducing development time and manufacturing costs. This review compares traditional and AI-based methods of AAV vector engineering and highlights recent research in AAV engineering using AI algorithms.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411062"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adeno-associated virus (AAV) has emerged as a leading vector for gene therapy due to its broad host range, low pathogenicity, and ability to facilitate long-term gene expression. However, AAV vectors face limitations, including immunogenicity and insufficient targeting specificity. To enhance the efficacy of gene therapy, researchers have been modifying the AAV vector using various methods. Traditional experimental approaches for optimizing AAV vector are often time-consuming, resource-intensive, and difficult to replicate. The advancement of artificial intelligence (AI), particularly machine learning, offers significant potential to accelerate capsid optimization while reducing development time and manufacturing costs. This review compares traditional and AI-based methods of AAV vector engineering and highlights recent research in AAV engineering using AI algorithms.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.