Xinyu Ding, Qi Wu, Yanhua Du, Meng-Meng Ji, Hua Yang, Qingsong Hu, Youqiong Ye
{"title":"CDK16<sup>+</sup> Luminal Progenitor Cell-Like Tumor Cells Interacted with POSTN<sup>+</sup> Cancer-Associated Fibroblasts Associate with Chemo-Resistance In Breast Cancer.","authors":"Xinyu Ding, Qi Wu, Yanhua Du, Meng-Meng Ji, Hua Yang, Qingsong Hu, Youqiong Ye","doi":"10.1002/smtd.202401192","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor heterogeneity and interaction with tumor microenvironment play a crucial role in neoadjuvant chemotherapy (NAC) resistance in breast cancer (BRCA). Unraveling this dynamic interaction may help uncover novel therapeutic targets. Here, dynamic changes in tumor states and cellular composition are systemically characterized using 175,825 single-cell transcriptomics from naïve and post-treatment biopsies of BRCA patients receiving NAC. CDK16<sup>+</sup> tumors are identified featured with luminal progenitor cell (LPC)-like tumor cells enriched in the triple-negative subtype of BRCA, associated with chemo-resistance. Integrating single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and six independent public gene expression profiles that underwent chemotherapy revealed that POSTN<sup>+</sup> cancer-associated fibroblasts (CAFs) are closely localized and interacted with CDK16<sup>+</sup> LPC-like tumor cells to promote chemo-resistance. In vivo, CDK16 knockdown in tumor cells combined with chemotherapy significantly enhanced therapeutic efficacy. This in-house scRNA-seq from a mouse model validated that CDK16 knockdown reduced the LPC-like tumor cell signature, and the interaction of tumor featured with LPC-like tumor cells and POSTN<sup>+</sup> CAFs. Together, the systematically integrated analyses uncovered an interaction network of CDK16<sup>+</sup> tumor and POSTN<sup>+</sup> CAFs that contributed to NAC- resistance, providing a new strategy for targeting CDK16 to enhance chemotherapy efficacy.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401192"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401192","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor heterogeneity and interaction with tumor microenvironment play a crucial role in neoadjuvant chemotherapy (NAC) resistance in breast cancer (BRCA). Unraveling this dynamic interaction may help uncover novel therapeutic targets. Here, dynamic changes in tumor states and cellular composition are systemically characterized using 175,825 single-cell transcriptomics from naïve and post-treatment biopsies of BRCA patients receiving NAC. CDK16+ tumors are identified featured with luminal progenitor cell (LPC)-like tumor cells enriched in the triple-negative subtype of BRCA, associated with chemo-resistance. Integrating single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and six independent public gene expression profiles that underwent chemotherapy revealed that POSTN+ cancer-associated fibroblasts (CAFs) are closely localized and interacted with CDK16+ LPC-like tumor cells to promote chemo-resistance. In vivo, CDK16 knockdown in tumor cells combined with chemotherapy significantly enhanced therapeutic efficacy. This in-house scRNA-seq from a mouse model validated that CDK16 knockdown reduced the LPC-like tumor cell signature, and the interaction of tumor featured with LPC-like tumor cells and POSTN+ CAFs. Together, the systematically integrated analyses uncovered an interaction network of CDK16+ tumor and POSTN+ CAFs that contributed to NAC- resistance, providing a new strategy for targeting CDK16 to enhance chemotherapy efficacy.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.