Yongeun Cho, Jeongmi Lee, Jun-Sik Kim, Yeji Jeon, Sukmin Han, Heewon Cho, Yeongyeong Lee, Tai Kyoung Kim, Ju-Mi Hong, Yujeong Lee, Yujung Byun, Minshik Chae, Sunyoung Park, Leon F Palomera, Sang Yoon Park, Hyunwook Kim, Soyeong Kim, Seongeun Kang, Jun-Goo Jee, Hongchan An, Joung Han Yim, Sung Hyun Kim, Dong-Gyu Jo
{"title":"RA-PR058, a novel ramalin derivative, reduces BACE1 expression and phosphorylation of tau in Alzheimer's disease mouse models.","authors":"Yongeun Cho, Jeongmi Lee, Jun-Sik Kim, Yeji Jeon, Sukmin Han, Heewon Cho, Yeongyeong Lee, Tai Kyoung Kim, Ju-Mi Hong, Yujeong Lee, Yujung Byun, Minshik Chae, Sunyoung Park, Leon F Palomera, Sang Yoon Park, Hyunwook Kim, Soyeong Kim, Seongeun Kang, Jun-Goo Jee, Hongchan An, Joung Han Yim, Sung Hyun Kim, Dong-Gyu Jo","doi":"10.1080/19768354.2025.2459649","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by cognitive decline, anxiety-like behavior, β-amyloid (Aβ) accumulation, and tau hyperphosphorylation. BACE1, the enzyme critical for Aβ production, has been a major therapeutic target; however, direct BACE1 inhibition has been associated with adverse side effects. This study investigates the therapeutic potential of RA-PR058, a novel ramalin derivative, as a multi-targeted modulator of AD-related pathologies. The effects of RA-PR058 were evaluated <i>in vitro</i> and <i>in vivo</i>. <i>In vitro</i> studies used SH-SY5Y cells under oxidative stress conditions to assess BACE1 expression, while <i>in vivo</i> effects were studied in 3xTg-AD mice following one month of oral RA-PR058 treatment. Behavioral assessments, biochemical analyses, transcriptomic profiling, and pharmacokinetic evaluations were performed to determine the efficacy of RA-PR058. RA-PR058 significantly reduced oxidative stress-induced BACE1 expression <i>in vitro</i> and decreased cortical BACE1 expression in 3xTg-AD mice. <i>In vivo</i> treatment alleviated anxiety-like behavior and reduced tau phosphorylation at disease-relevant sites (Ser202/Thr205, Thr231, and Ser396). Transcriptomic analysis revealed RA-PR058-mediated gene expression changes related to central nervous system development, response to hypoxia, and neuroactive ligand-receptor interactions, suggesting broader regulatory effects on AD-related pathways. Pharmacokinetic analysis demonstrated that RA-PR058 exhibits high metabolic stability, minimal cytochrome P450 interactions, and moderate blood-brain barrier penetration. RA-PR058 demonstrates potential as a multi-target AD therapeutic by reducing BACE1 expression, tau hyperphosphorylation, and anxiety-like behavior, coupled with favorable pharmacokinetics. Additional studies are needed to assess cognitive effects and clarify molecular mechanisms, but RA-PR058 may represent a promising advancement in addressing AD's complex pathology.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"122-134"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2459649","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by cognitive decline, anxiety-like behavior, β-amyloid (Aβ) accumulation, and tau hyperphosphorylation. BACE1, the enzyme critical for Aβ production, has been a major therapeutic target; however, direct BACE1 inhibition has been associated with adverse side effects. This study investigates the therapeutic potential of RA-PR058, a novel ramalin derivative, as a multi-targeted modulator of AD-related pathologies. The effects of RA-PR058 were evaluated in vitro and in vivo. In vitro studies used SH-SY5Y cells under oxidative stress conditions to assess BACE1 expression, while in vivo effects were studied in 3xTg-AD mice following one month of oral RA-PR058 treatment. Behavioral assessments, biochemical analyses, transcriptomic profiling, and pharmacokinetic evaluations were performed to determine the efficacy of RA-PR058. RA-PR058 significantly reduced oxidative stress-induced BACE1 expression in vitro and decreased cortical BACE1 expression in 3xTg-AD mice. In vivo treatment alleviated anxiety-like behavior and reduced tau phosphorylation at disease-relevant sites (Ser202/Thr205, Thr231, and Ser396). Transcriptomic analysis revealed RA-PR058-mediated gene expression changes related to central nervous system development, response to hypoxia, and neuroactive ligand-receptor interactions, suggesting broader regulatory effects on AD-related pathways. Pharmacokinetic analysis demonstrated that RA-PR058 exhibits high metabolic stability, minimal cytochrome P450 interactions, and moderate blood-brain barrier penetration. RA-PR058 demonstrates potential as a multi-target AD therapeutic by reducing BACE1 expression, tau hyperphosphorylation, and anxiety-like behavior, coupled with favorable pharmacokinetics. Additional studies are needed to assess cognitive effects and clarify molecular mechanisms, but RA-PR058 may represent a promising advancement in addressing AD's complex pathology.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.