Silver Nanoparticle (AgNP), Neurotoxicity, and Putative Adverse Outcome Pathway (AOP): A Review.

IF 3.4 3区 医学 Q2 NEUROSCIENCES Neurotoxicology Pub Date : 2025-02-08 DOI:10.1016/j.neuro.2025.02.001
Julie Juyoung Park, Elaine M Faustman
{"title":"Silver Nanoparticle (AgNP), Neurotoxicity, and Putative Adverse Outcome Pathway (AOP): A Review.","authors":"Julie Juyoung Park, Elaine M Faustman","doi":"10.1016/j.neuro.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Various silver nanoparticles (AgNPs) exist with different sizes, coatings, and shapes. AgNPs have unique physical and chemical properties, such as high surface-to-volume ratio and antimicrobial properties, which allow them to be used in a wide array of applications in consumer products and medical applications, including clothing, cosmetics, food packaging, medical devices, and wound dressings. They are also one of the most studied engineered nanomaterials (ENMs). Though the liver and lung have been identified as the primary targets of AgNP exposures, an increasing number of studies have reported accumulations of AgNPs in the brains of AgNP-exposed animals. These findings have raised concerns because the brain plays a critical function in our body and may have difficulty clearing AgNPs, unlike the liver and lung. Studies have been conducted to investigate potential neurotoxicity effects of AgNP exposures, but they use various types of AgNPs and routes of administration, which makes it difficult to compare across studies. Therefore, the goal of this review was to (1) assess factors that may affect AgNP-induced neurotoxicity, (2) identify potential mechanisms of neurotoxicity exerted by AgNPs, (3) review existing in vitro dose-response and in vivo exposure-response AgNP-induced neurotoxicity studies, and (4) provide an example application of benchmark doses (BMDs) in comparing across different studies. A combination of aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) framework was utilized to link AgNP exposure sources and routes to molecular initiating events (MIEs) and then to adverse neurotoxicity outcomes at the cellular, organ, organism, and population levels. This review is the first to propose an AEP/AOP specific to AgNP-induced neurotoxicity, which may contribute toward identifying plausible key event relationships between MIEs and adverse neurotoxicity outcomes and improving the current risk assessment of AgNPs.</p>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuro.2025.02.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Various silver nanoparticles (AgNPs) exist with different sizes, coatings, and shapes. AgNPs have unique physical and chemical properties, such as high surface-to-volume ratio and antimicrobial properties, which allow them to be used in a wide array of applications in consumer products and medical applications, including clothing, cosmetics, food packaging, medical devices, and wound dressings. They are also one of the most studied engineered nanomaterials (ENMs). Though the liver and lung have been identified as the primary targets of AgNP exposures, an increasing number of studies have reported accumulations of AgNPs in the brains of AgNP-exposed animals. These findings have raised concerns because the brain plays a critical function in our body and may have difficulty clearing AgNPs, unlike the liver and lung. Studies have been conducted to investigate potential neurotoxicity effects of AgNP exposures, but they use various types of AgNPs and routes of administration, which makes it difficult to compare across studies. Therefore, the goal of this review was to (1) assess factors that may affect AgNP-induced neurotoxicity, (2) identify potential mechanisms of neurotoxicity exerted by AgNPs, (3) review existing in vitro dose-response and in vivo exposure-response AgNP-induced neurotoxicity studies, and (4) provide an example application of benchmark doses (BMDs) in comparing across different studies. A combination of aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) framework was utilized to link AgNP exposure sources and routes to molecular initiating events (MIEs) and then to adverse neurotoxicity outcomes at the cellular, organ, organism, and population levels. This review is the first to propose an AEP/AOP specific to AgNP-induced neurotoxicity, which may contribute toward identifying plausible key event relationships between MIEs and adverse neurotoxicity outcomes and improving the current risk assessment of AgNPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotoxicology
Neurotoxicology 医学-毒理学
CiteScore
6.80
自引率
5.90%
发文量
161
审稿时长
70 days
期刊介绍: NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.
期刊最新文献
Tanshinone IIA mitigates postoperative cognitive dysfunction in aged rats by inhibiting hippocampal inflammation and ferroptosis: Role of Nrf2/SLC7A11/GPX4 axis activation World Trade Center Response Activities and Cognitive Health: A Moderated Mediation Study of the Role of Surgical/Nuisance Dust Mask Usage. Polysaccharide alleviates neurodegeneration and behavioral deficit by enhancing mitochondrial autophagy in chronic methamphetamine mice Silver Nanoparticle (AgNP), Neurotoxicity, and Putative Adverse Outcome Pathway (AOP): A Review. Therapeutic potential of pranlukast against cuprizone-induced inflammatory demyelination and sensory impairment in mice: Comparison with fingolimod
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1