Xuanhao Lei, Haonan Li, Sibei Chen, Bing Li, Huili Xia, Jun Li, Feng Guan, Jian Ge
{"title":"Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating miRNAs in HepG-2 cells.","authors":"Xuanhao Lei, Haonan Li, Sibei Chen, Bing Li, Huili Xia, Jun Li, Feng Guan, Jian Ge","doi":"10.1186/s40643-025-00844-1","DOIUrl":null,"url":null,"abstract":"<p><p>Tea is a widely consumed beverage globally, but the tea industry faces a significant waste management challenge. In this study, we developed tea leaf exosome-like nanoparticles (TELNs) with an average size of 274 ± 24.7 nm and a zeta potential of -20.6 ± 0.78 mV, using polyethylene glycol (PEG) 6000 precipitation followed by ultracentrifugation. Structural analysis confirmed that TELNs are composed of lipids, proteins, and RNAs. In vitro assays on HepG-2 cells revealed that TELNs are non-toxic at concentrations up to 300 µg/mL and can be efficiently internalized. TELNs exhibited significant antioxidant capacity and were able to significantly ameliorate H<sub>2</sub>O<sub>2</sub>-induced oxidative stress, increase the viability and reduce the accumulation of ROS in Hepg-2 cells. Notably, TELNs significantly alleviated OA-induced lipid metabolic disorders and hepatocellular injury. Further molecular analysis revealed that TELNs downregulated the expression of miR-21-5p, miR-17-3p, and miR-107, leading to the upregulation of their target genes PPARα, CYP7A1, and CPT-1A, which contributed to the improvement of lipid metabolism. This study is the first to demonstrate the lipid metabolism regulation potential of TELNs, providing new insights into their underlying mechanisms and helping to develop new therapeutic strategies for lipid metabolism-related diseases. Furthermore, it expands the scope of tea use and helps to reuse tea residues.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"9"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00844-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tea is a widely consumed beverage globally, but the tea industry faces a significant waste management challenge. In this study, we developed tea leaf exosome-like nanoparticles (TELNs) with an average size of 274 ± 24.7 nm and a zeta potential of -20.6 ± 0.78 mV, using polyethylene glycol (PEG) 6000 precipitation followed by ultracentrifugation. Structural analysis confirmed that TELNs are composed of lipids, proteins, and RNAs. In vitro assays on HepG-2 cells revealed that TELNs are non-toxic at concentrations up to 300 µg/mL and can be efficiently internalized. TELNs exhibited significant antioxidant capacity and were able to significantly ameliorate H2O2-induced oxidative stress, increase the viability and reduce the accumulation of ROS in Hepg-2 cells. Notably, TELNs significantly alleviated OA-induced lipid metabolic disorders and hepatocellular injury. Further molecular analysis revealed that TELNs downregulated the expression of miR-21-5p, miR-17-3p, and miR-107, leading to the upregulation of their target genes PPARα, CYP7A1, and CPT-1A, which contributed to the improvement of lipid metabolism. This study is the first to demonstrate the lipid metabolism regulation potential of TELNs, providing new insights into their underlying mechanisms and helping to develop new therapeutic strategies for lipid metabolism-related diseases. Furthermore, it expands the scope of tea use and helps to reuse tea residues.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology