Hao Phu Dong, Binh Thanh Nguyen, Thia Hong Le, My Hoang Nguyen, Anh Hoang Le
{"title":"Agricultural byproduct-derived biochar for mitigating trace metal risks from soil to rice to public health: implications for sustainable management.","authors":"Hao Phu Dong, Binh Thanh Nguyen, Thia Hong Le, My Hoang Nguyen, Anh Hoang Le","doi":"10.1093/inteam/vjaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal contamination in soil and its accumulation in rice poses a health risk to over 50% of the global population. Simultaneously, the poor management and underutilization of agricultural biomass waste presents an additional environmental challenge. Converting this biomass into biochar offers a potential solution to these challenges. This study evaluated biochar's impacts on soil trace element content, rice plant uptake, translocation, accumulation, and associated human health risks while identifying rice response mechanisms to biochar application. A two-season field experiment was conducted using five treatments: T1 (no biochar), T2 and T3 (10 and 20 tons of rice-husk biochar), and T4 and T5 (10 and 20 tons of longan biochar). Eight trace elements, categorized as micronutrients (Fe, Mn, Cu, Zn) and toxic elements (Cd, Pb, Co, Ni), were measured in rice roots, stems, grains, and soil. Biochar application reduced the heavy metal pollution index (HPI) by 5.9% to 11.4% for micronutrients and 2.8% to 4.4% for toxic elements compared to T1. Translocation, bioaccumulation, and phytoextraction indexes tend to increase with biochar, while the hazard index decreased by 5.1-9.5% for micronutrients and 1.3-8.5% for toxic elements, indicating reduced health risks. These results highlight biochar's dual role in enhancing trace element phytoextraction and reducing health risks, with a more pronounced effect on micronutrients. Rice plants responded to reduced micronutrient availability by boosting uptake while lowering toxic element absorption when HPI was high. Briefly, transforming agricultural waste into biochar for rice cultivation offers multiple benefits, promoting agricultural sustainability, environmental health, and consumer safety.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf024","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal contamination in soil and its accumulation in rice poses a health risk to over 50% of the global population. Simultaneously, the poor management and underutilization of agricultural biomass waste presents an additional environmental challenge. Converting this biomass into biochar offers a potential solution to these challenges. This study evaluated biochar's impacts on soil trace element content, rice plant uptake, translocation, accumulation, and associated human health risks while identifying rice response mechanisms to biochar application. A two-season field experiment was conducted using five treatments: T1 (no biochar), T2 and T3 (10 and 20 tons of rice-husk biochar), and T4 and T5 (10 and 20 tons of longan biochar). Eight trace elements, categorized as micronutrients (Fe, Mn, Cu, Zn) and toxic elements (Cd, Pb, Co, Ni), were measured in rice roots, stems, grains, and soil. Biochar application reduced the heavy metal pollution index (HPI) by 5.9% to 11.4% for micronutrients and 2.8% to 4.4% for toxic elements compared to T1. Translocation, bioaccumulation, and phytoextraction indexes tend to increase with biochar, while the hazard index decreased by 5.1-9.5% for micronutrients and 1.3-8.5% for toxic elements, indicating reduced health risks. These results highlight biochar's dual role in enhancing trace element phytoextraction and reducing health risks, with a more pronounced effect on micronutrients. Rice plants responded to reduced micronutrient availability by boosting uptake while lowering toxic element absorption when HPI was high. Briefly, transforming agricultural waste into biochar for rice cultivation offers multiple benefits, promoting agricultural sustainability, environmental health, and consumer safety.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.