Osmotically-induced rupture of viral capsids.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2025-02-10 DOI:10.1088/1361-648X/adb46f
Felipe Martins Brito Aguiar, Thiago Colla
{"title":"Osmotically-induced rupture of viral capsids.","authors":"Felipe Martins Brito Aguiar, Thiago Colla","doi":"10.1088/1361-648X/adb46f","DOIUrl":null,"url":null,"abstract":"<p><p>A simple model is proposed aimed to investigate how the amount of dissociated ions influences&#xD;mechanical stability of viral capsids. After an osmotic and mechanical equilibrium is established&#xD;with the outer solution, a non-adiabatic change in salt concentration at the external environment&#xD;is considered, which results in a significant solvent inflow across the capsid surface, eventually&#xD;leading to its rupture.&#xD;The key assumption behind such an osmotic shock mechanism is that&#xD;solvent flow takes place at timescales much shorter than the ones typical of ionic diffusion.&#xD;In&#xD;order to theoretically describe this effect, we herein propose a thermodynamic model based on the&#xD;traditional Flory theory. The proposed approach is further combined with a continuum Hookian&#xD;elastic model of surface stretching and pore-opening along the lines of a Classical Nucleation Theory&#xD;(CNT), allowing us to establish the conditions under which capsid mechanical instability takes&#xD;place. It is shown that,&#xD;depending on the particular combination of initial condition and capsid surface strength, the capsid&#xD;can either become unstable after removal of a prescribed amount of external salt, or be fully stable&#xD;against osmotic shock, regardless of the amount of ionic dilution.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb46f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A simple model is proposed aimed to investigate how the amount of dissociated ions influences mechanical stability of viral capsids. After an osmotic and mechanical equilibrium is established with the outer solution, a non-adiabatic change in salt concentration at the external environment is considered, which results in a significant solvent inflow across the capsid surface, eventually leading to its rupture. The key assumption behind such an osmotic shock mechanism is that solvent flow takes place at timescales much shorter than the ones typical of ionic diffusion. In order to theoretically describe this effect, we herein propose a thermodynamic model based on the traditional Flory theory. The proposed approach is further combined with a continuum Hookian elastic model of surface stretching and pore-opening along the lines of a Classical Nucleation Theory (CNT), allowing us to establish the conditions under which capsid mechanical instability takes place. It is shown that, depending on the particular combination of initial condition and capsid surface strength, the capsid can either become unstable after removal of a prescribed amount of external salt, or be fully stable against osmotic shock, regardless of the amount of ionic dilution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
On the shape of Gaussian scale-free polymer networks. Investigation of MoTe nanowires in honeycomb and kagome lattices: Dirac cones and flat bands. Edge effects in a planar magnet caused by the impact of an electric field. Ab initio calculations of pressure and temperature dependent elastic constants of lead. Fundamental physical constants, operation of physical phenomena and entropy increase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1