{"title":"Development and validation of a surgical robot system for orbital decompression surgery.","authors":"Yanping Lin, Shiqi Peng, Siqi Jiao, Yi Wang, Yinwei Li, Huifang Zhou","doi":"10.1007/s11548-025-03322-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Orbital decompression surgery, which expands the volume of the orbit by removing sections of the orbital walls with a drill and saw, is an important treatment option for thyroid-associated ophthalmopathy. However, it is often limited by physical factors such as a narrow operating space and instability of the manual holding of surgical instruments, which constrains doctors from accurately executing surgical planning.</p><p><strong>Methods: </strong>To overcome these limitations, we designed a surgical robot comprising position adjustment, remote center of motion, and end-effector with a rapid surgical instrument assembly mechanisms. Additionally, to guide surgical robots in precisely performing preoperative surgical planning, we constructed a surgical navigation system comprising preoperative surgical planning and intraoperative optical navigation subsystems. An internally complementary orbital surgical robot system in which the navigation system, optical tracker, and surgical robot and its motion control system serve as the decision-making, perception, and execution layers of the system, respectively, was developed.</p><p><strong>Results: </strong>The results of precision measurement experiments revealed that the absolute and repeated pose accuracies of the surgical robot satisfied the design requirements. As verified by animal experiments, the precision of osteotomy and bone drilling operation of orbital surgical robot system can meet the clinical technical indicators.</p><p><strong>Conclusion: </strong>The developed orbital surgical robotic system for orbital decompression surgery could perform routine operations such as drilling and sawing on the orbital bone with assistance and supervision from surgeons. The feasibility and reliability of the orbital surgical robot system were comprehensively verified through accuracy measurements and animal experiments.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03322-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Orbital decompression surgery, which expands the volume of the orbit by removing sections of the orbital walls with a drill and saw, is an important treatment option for thyroid-associated ophthalmopathy. However, it is often limited by physical factors such as a narrow operating space and instability of the manual holding of surgical instruments, which constrains doctors from accurately executing surgical planning.
Methods: To overcome these limitations, we designed a surgical robot comprising position adjustment, remote center of motion, and end-effector with a rapid surgical instrument assembly mechanisms. Additionally, to guide surgical robots in precisely performing preoperative surgical planning, we constructed a surgical navigation system comprising preoperative surgical planning and intraoperative optical navigation subsystems. An internally complementary orbital surgical robot system in which the navigation system, optical tracker, and surgical robot and its motion control system serve as the decision-making, perception, and execution layers of the system, respectively, was developed.
Results: The results of precision measurement experiments revealed that the absolute and repeated pose accuracies of the surgical robot satisfied the design requirements. As verified by animal experiments, the precision of osteotomy and bone drilling operation of orbital surgical robot system can meet the clinical technical indicators.
Conclusion: The developed orbital surgical robotic system for orbital decompression surgery could perform routine operations such as drilling and sawing on the orbital bone with assistance and supervision from surgeons. The feasibility and reliability of the orbital surgical robot system were comprehensively verified through accuracy measurements and animal experiments.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.