Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2025-02-11 DOI:10.1007/s11548-024-03281-1
Luyang Zhang, Yuichiro Hayashi, Masahiro Oda, Kensaku Mori
{"title":"Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes.","authors":"Luyang Zhang, Yuichiro Hayashi, Masahiro Oda, Kensaku Mori","doi":"10.1007/s11548-024-03281-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Deep-learning-based supervised CT segmentation relies on fully and densely labeled data, the labeling process of which is time-consuming. In this study, our proposed method aims to improve segmentation performance on CT volumes with limited annotated data by considering category-wise difficulties and distribution.</p><p><strong>Methods: </strong>We propose a novel confidence-difficulty weight (CDifW) allocation method that considers confidence levels, balancing the training across different categories, influencing the loss function and volume-mixing process for pseudo-label generation. Additionally, we introduce a novel Double-Mix Pseudo-label Framework (DMPF), which strategically selects categories for image blending based on the distribution of voxel-counts per category and the weight of segmentation difficulty. DMPF is designed to enhance the segmentation performance of categories that are challenging to segment.</p><p><strong>Result: </strong>Our approach was tested on two commonly used datasets: a Congenital Heart Disease (CHD) dataset and a Beyond-the-Cranial-Vault (BTCV) Abdomen dataset. Compared to the SOTA methods, our approach achieved an improvement of 5.1% and 7.0% in Dice score for the segmentation of difficult-to-segment categories on 5% of the labeled data in CHD and 40% of the labeled data in BTCV, respectively.</p><p><strong>Conclusion: </strong>Our method improves segmentation performance in difficult categories within CT volumes by category-wise weights and weight-based mixture augmentation. Our method was validated across multiple datasets and is significant for advancing semi-supervised segmentation tasks in health care. The code is available at https://github.com/MoriLabNU/Double-Mix .</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03281-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Deep-learning-based supervised CT segmentation relies on fully and densely labeled data, the labeling process of which is time-consuming. In this study, our proposed method aims to improve segmentation performance on CT volumes with limited annotated data by considering category-wise difficulties and distribution.

Methods: We propose a novel confidence-difficulty weight (CDifW) allocation method that considers confidence levels, balancing the training across different categories, influencing the loss function and volume-mixing process for pseudo-label generation. Additionally, we introduce a novel Double-Mix Pseudo-label Framework (DMPF), which strategically selects categories for image blending based on the distribution of voxel-counts per category and the weight of segmentation difficulty. DMPF is designed to enhance the segmentation performance of categories that are challenging to segment.

Result: Our approach was tested on two commonly used datasets: a Congenital Heart Disease (CHD) dataset and a Beyond-the-Cranial-Vault (BTCV) Abdomen dataset. Compared to the SOTA methods, our approach achieved an improvement of 5.1% and 7.0% in Dice score for the segmentation of difficult-to-segment categories on 5% of the labeled data in CHD and 40% of the labeled data in BTCV, respectively.

Conclusion: Our method improves segmentation performance in difficult categories within CT volumes by category-wise weights and weight-based mixture augmentation. Our method was validated across multiple datasets and is significant for advancing semi-supervised segmentation tasks in health care. The code is available at https://github.com/MoriLabNU/Double-Mix .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Development and validation of a surgical robot system for orbital decompression surgery. Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes. Intraoperative adaptive eye model based on instrument-integrated OCT for robot-assisted vitreoretinal surgery. A deep learning-driven method for safe and effective ERCP cannulation. German surgeons' perspective on the application of artificial intelligence in clinical decision-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1