{"title":"A de Finetti theorem for quantum causal structures","authors":"Fabio Costa, Jonathan Barrett, Sally Shrapnel","doi":"10.22331/q-2025-02-11-1628","DOIUrl":null,"url":null,"abstract":"What does it mean for a causal structure to be `unknown'? Can we even talk about `repetitions' of an experiment without prior knowledge of causal relations? And under what conditions can we say that a set of processes with arbitrary, possibly indefinite, causal structure are independent and identically distributed? Similar questions for classical probabilities, quantum states, and quantum channels are beautifully answered by so-called \"de Finetti theorems\", which connect a simple and easy-to-justify condition – symmetry under exchange – with a very particular multipartite structure: a mixture of identical states/channels. Here we extend the result to processes with arbitrary causal structure, including indefinite causal order and multi-time, non-Markovian processes applicable to noisy quantum devices. The result also implies a new class of de Finetti theorems for quantum states subject to a large class of linear constraints, which can be of independent interest.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"41 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-11-1628","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
What does it mean for a causal structure to be `unknown'? Can we even talk about `repetitions' of an experiment without prior knowledge of causal relations? And under what conditions can we say that a set of processes with arbitrary, possibly indefinite, causal structure are independent and identically distributed? Similar questions for classical probabilities, quantum states, and quantum channels are beautifully answered by so-called "de Finetti theorems", which connect a simple and easy-to-justify condition – symmetry under exchange – with a very particular multipartite structure: a mixture of identical states/channels. Here we extend the result to processes with arbitrary causal structure, including indefinite causal order and multi-time, non-Markovian processes applicable to noisy quantum devices. The result also implies a new class of de Finetti theorems for quantum states subject to a large class of linear constraints, which can be of independent interest.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.