Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás
{"title":"Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs","authors":"Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás","doi":"10.22331/q-2025-03-20-1663","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent cost Hamiltonian suitable for the quantum device. Implementing each term of the cost Hamiltonian separately often results in high redundancy, significantly increasing the resources required. Instead, we propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits, eliminating the reliance on the binary optimization problem representation. This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Program-based QAOA (Prog-QAOA). We exploit this idea for optimization tasks like the Travelling Salesman Problem and Max-$K$-Cut and obtain circuits that are near-optimal with respect to all relevant cost measures, e.g., number of qubits, gates, and circuit depth. While we demonstrate the power of Prog-QAOA only for a particular set of paradigmatic problems, our approach is conveniently applicable to generic optimization problems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"44 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-20-1663","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current state-of-the-art quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent cost Hamiltonian suitable for the quantum device. Implementing each term of the cost Hamiltonian separately often results in high redundancy, significantly increasing the resources required. Instead, we propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits, eliminating the reliance on the binary optimization problem representation. This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Program-based QAOA (Prog-QAOA). We exploit this idea for optimization tasks like the Travelling Salesman Problem and Max-$K$-Cut and obtain circuits that are near-optimal with respect to all relevant cost measures, e.g., number of qubits, gates, and circuit depth. While we demonstrate the power of Prog-QAOA only for a particular set of paradigmatic problems, our approach is conveniently applicable to generic optimization problems.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.