Dimitar Trenev, Pauline J Ollitrault, Stuart M. Harwood, Tanvi P. Gujarati, Sumathy Raman, Antonio Mezzacapo, Sarah Mostame
{"title":"Refining resource estimation for the quantum computation of vibrational molecular spectra through Trotter error analysis","authors":"Dimitar Trenev, Pauline J Ollitrault, Stuart M. Harwood, Tanvi P. Gujarati, Sumathy Raman, Antonio Mezzacapo, Sarah Mostame","doi":"10.22331/q-2025-02-11-1630","DOIUrl":null,"url":null,"abstract":"Accurate simulations of vibrational molecular spectra are expensive on conventional computers. Compared to the electronic structure problem, the vibrational structure problem with quantum computers is less investigated. In this work we accurately estimate quantum resources, such as number of logical qubits and quantum gates, required for vibrational structure calculations on a programmable quantum computer. Our approach is based on quantum phase estimation and focuses on fault-tolerant quantum devices. In addition to asymptotic estimates for generic chemical compounds, we present a more detailed analysis of the quantum resources needed for the simulation of the Hamiltonian arising in the vibrational structure calculation of acetylene-like polyynes of interest. Leveraging nested commutators, we provide an in-depth quantitative analysis of trotter errors compared to the prior investigations. Ultimately, this work serves as a guide for analyzing the potential quantum advantage within vibrational structure simulations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"63 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-11-1630","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate simulations of vibrational molecular spectra are expensive on conventional computers. Compared to the electronic structure problem, the vibrational structure problem with quantum computers is less investigated. In this work we accurately estimate quantum resources, such as number of logical qubits and quantum gates, required for vibrational structure calculations on a programmable quantum computer. Our approach is based on quantum phase estimation and focuses on fault-tolerant quantum devices. In addition to asymptotic estimates for generic chemical compounds, we present a more detailed analysis of the quantum resources needed for the simulation of the Hamiltonian arising in the vibrational structure calculation of acetylene-like polyynes of interest. Leveraging nested commutators, we provide an in-depth quantitative analysis of trotter errors compared to the prior investigations. Ultimately, this work serves as a guide for analyzing the potential quantum advantage within vibrational structure simulations.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.