High-throughput multiplexed serology via the mass-spectrometric analysis of isotopically barcoded beads

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2025-02-12 DOI:10.1038/s41551-025-01349-0
Alexandros P. Drainas, David R. McIlwain, Alec Dallas, Theresa Chu, Antonio Delgado-González, Maya Baron, Maria Angulo-Ibáñez, Angelica Trejo, Yunhao Bai, John W. Hickey, Guolan Lu, Scott Lu, Jesus Pineda-Ramirez, Khamal Anglin, Eugene T. Richardson, John C. Prostko, Edwin Frias, Venice Servellita, Noah Brazer, Charles Y. Chiu, Michael J. Peluso, Jeffrey N. Martin, Oliver F. Wirz, Tho D. Pham, Scott D. Boyd, J. Daniel Kelly, Julien Sage, Garry P. Nolan, Xavier Rovira-Clavé
{"title":"High-throughput multiplexed serology via the mass-spectrometric analysis of isotopically barcoded beads","authors":"Alexandros P. Drainas, David R. McIlwain, Alec Dallas, Theresa Chu, Antonio Delgado-González, Maya Baron, Maria Angulo-Ibáñez, Angelica Trejo, Yunhao Bai, John W. Hickey, Guolan Lu, Scott Lu, Jesus Pineda-Ramirez, Khamal Anglin, Eugene T. Richardson, John C. Prostko, Edwin Frias, Venice Servellita, Noah Brazer, Charles Y. Chiu, Michael J. Peluso, Jeffrey N. Martin, Oliver F. Wirz, Tho D. Pham, Scott D. Boyd, J. Daniel Kelly, Julien Sage, Garry P. Nolan, Xavier Rovira-Clavé","doi":"10.1038/s41551-025-01349-0","DOIUrl":null,"url":null,"abstract":"<p>In serology, each sample is typically tested individually, one antigen at a time. This is costly and time consuming. Serology techniques should ideally allow recurrent measurements in parallel in small sample volumes and be inexpensive and fast. Here we show that mass cytometry can be used to scale up multiplexed serology testing by leveraging polystyrene beads uniformly loaded with combinations of stable isotopes. We generated 18,480 unique isotopically barcoded beads to simultaneously detect, in a single tube with 924 serum samples, the levels of immunoglobulins G and M against 19 proteins from SARS-CoV-2 (a total of 36,960 tests in 400 nl of sample volume and 30 μl of reaction volume). As a rapid, high-throughput and cost-effective technique, serology by mass cytometry may contribute to the effective management of public health emergencies originating from infectious diseases.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"22 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01349-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In serology, each sample is typically tested individually, one antigen at a time. This is costly and time consuming. Serology techniques should ideally allow recurrent measurements in parallel in small sample volumes and be inexpensive and fast. Here we show that mass cytometry can be used to scale up multiplexed serology testing by leveraging polystyrene beads uniformly loaded with combinations of stable isotopes. We generated 18,480 unique isotopically barcoded beads to simultaneously detect, in a single tube with 924 serum samples, the levels of immunoglobulins G and M against 19 proteins from SARS-CoV-2 (a total of 36,960 tests in 400 nl of sample volume and 30 μl of reaction volume). As a rapid, high-throughput and cost-effective technique, serology by mass cytometry may contribute to the effective management of public health emergencies originating from infectious diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
Targeting vaccines to dendritic cells by mimicking the processing and presentation of antigens in xenotransplant rejection High-throughput multiplexed serology via the mass-spectrometric analysis of isotopically barcoded beads A gut-on-a-chip incorporating human faecal samples and peristalsis predicts responses to immune checkpoint inhibitors for melanoma Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array Small circular RNAs as vaccines for cancer immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1