The Brain-Penetrant Pan ErbB Inhibitor Poziotinib Effectively Targets HER2+ Breast Cancer Brain Metastases

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2025-02-11 DOI:10.1158/0008-5472.can-24-1793
Danyyl Ippolitov, Yi-Han Lin, Jeremy Spence, Aleksandra Glogowska, Thatchawan Thanasupawat, Jason Beiko, Marc R. Del Bigio, Xin Xu, Amy Q. Wang, Darian Williams, Raul Calvo, Abhijeet Kapoor, Juan J. Marugan, Mark J. Henderson, Thomas Klonisch, Sabine Hombach-Klonisch
{"title":"The Brain-Penetrant Pan ErbB Inhibitor Poziotinib Effectively Targets HER2+ Breast Cancer Brain Metastases","authors":"Danyyl Ippolitov, Yi-Han Lin, Jeremy Spence, Aleksandra Glogowska, Thatchawan Thanasupawat, Jason Beiko, Marc R. Del Bigio, Xin Xu, Amy Q. Wang, Darian Williams, Raul Calvo, Abhijeet Kapoor, Juan J. Marugan, Mark J. Henderson, Thomas Klonisch, Sabine Hombach-Klonisch","doi":"10.1158/0008-5472.can-24-1793","DOIUrl":null,"url":null,"abstract":"Brain metastasis occurs in about 50% of all women with metastatic HER2+ breast cancer and confers poor prognosis for patients. Despite effective HER2-targeted treatments of peripheral HER2+ breast cancer with trastuzumab and HER2 inhibitors, limited brain permeability renders these treatments inefficient for HER2+ breast cancer brain metastasis (BCBM). The scarcity of suitable patient-derived in vivo models for HER2+ BCBM has curtailed the study of molecular mechanisms that promote growth and therapeutic resistance in brain metastasis. Here, we generated and characterized a luminal B HER2+ BCBM cell model (BCBM94) isolated from a patient HER2+ brain metastasis. Repeated hematogenic xenografting of BCBM94 consistently generated BCBM in mice. The clinical receptor tyrosine kinase inhibitor (RTKi) lapatinib blocked phosphorylation of all ErbB receptors (ErbB1-4) and induced the intrinsic apoptosis pathway in BCBM94. Neuregulin-1 (NRG1), an ErbB3/ErbB4 ligand that is abundantly expressed in the brain, abrogated lapatinib-induced apoptosis in HER2+ BCBM94 and BT474 models. ErbB3 signaling pathways that involved PI3K-AKT and the phosphorylation of BAD at serine 136 to prevent apoptosis were essential for NRG1-induced survival. High throughput RTKi screening identified the brain-penetrant pan-ErbB inhibitor poziotinib as a highly potent compound that reduced cell viability in HER2+ BCBM in the presence of NRG1. Two weeks of poziotinib treatment successfully ablated BCBM94 and BT474 HER2+ brain tumors in vivo. In conclusion, this study established a patient-derived HER2+ BCBM model and identified poziotinib as highly efficacious RTKi with excellent brain penetrability that eliminated HER2+ BCBM.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"99 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1793","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain metastasis occurs in about 50% of all women with metastatic HER2+ breast cancer and confers poor prognosis for patients. Despite effective HER2-targeted treatments of peripheral HER2+ breast cancer with trastuzumab and HER2 inhibitors, limited brain permeability renders these treatments inefficient for HER2+ breast cancer brain metastasis (BCBM). The scarcity of suitable patient-derived in vivo models for HER2+ BCBM has curtailed the study of molecular mechanisms that promote growth and therapeutic resistance in brain metastasis. Here, we generated and characterized a luminal B HER2+ BCBM cell model (BCBM94) isolated from a patient HER2+ brain metastasis. Repeated hematogenic xenografting of BCBM94 consistently generated BCBM in mice. The clinical receptor tyrosine kinase inhibitor (RTKi) lapatinib blocked phosphorylation of all ErbB receptors (ErbB1-4) and induced the intrinsic apoptosis pathway in BCBM94. Neuregulin-1 (NRG1), an ErbB3/ErbB4 ligand that is abundantly expressed in the brain, abrogated lapatinib-induced apoptosis in HER2+ BCBM94 and BT474 models. ErbB3 signaling pathways that involved PI3K-AKT and the phosphorylation of BAD at serine 136 to prevent apoptosis were essential for NRG1-induced survival. High throughput RTKi screening identified the brain-penetrant pan-ErbB inhibitor poziotinib as a highly potent compound that reduced cell viability in HER2+ BCBM in the presence of NRG1. Two weeks of poziotinib treatment successfully ablated BCBM94 and BT474 HER2+ brain tumors in vivo. In conclusion, this study established a patient-derived HER2+ BCBM model and identified poziotinib as highly efficacious RTKi with excellent brain penetrability that eliminated HER2+ BCBM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
REDUCED LENGTH OF STAY AFTER HIP AND KNEE ARTHROPLASTY DURING THE PANDEMIC: A RETROSPECTIVE COHORT STUDY
IF 0 Orthopaedic ProceedingsPub Date : 2023-04-04 DOI: 10.1302/1358-992x.2023.7.026
J. Lebleu, A. Pauwels, G. Kordás, Charles-Edouard Winandy, P. Van Overschelde
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Colorectal Tumors in Diverse Patient Populations Feature a Spectrum of Somatic Mutational Profiles "Dr. Jekyll and Mr. Hyde": AT2 Cells in Lung Regeneration and Tumor Development. A Genome-Wide Synthetic Lethal Screen Identifies Spermidine Synthase as a Target to Enhance Erdafitinib Efficacy in FGFR-Mutant Bladder Cancer. Age-Associated Modulation of TREM1/2-Expressing Macrophages Promotes Melanoma Progression and Metastasis. An Anti-EGFR Antibody-Drug Radioconjugate Labeled with Actinium-225 Elicits Durable Anti-Tumor Responses in KRAS and BRAF Mutant Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1