Jonathan M. DeLiberty, Mallory K. Roach, Clint A. Stalnecker, Ryan Robb, Elyse G. Schechter, Noah L. Pieper, Khalilah E. Taylor, Lily M. Pita, Runying Yang, Scott Bang, Kristina Drizyte-Miller, Sarah E. Ackermann, Sheila R. Nicewarner Peña, Elisa Baldelli, Sophia M. Min, David H. Drewry, Emanuel F. Petricoin, John P. Morris, Channing J. Der, Adrienne D. Cox, Kirsten L. Bryant
{"title":"Concurrent Inhibition of the RAS-MAPK Pathway and PIKfyve is a Therapeutic Strategy for Pancreatic Cancer","authors":"Jonathan M. DeLiberty, Mallory K. Roach, Clint A. Stalnecker, Ryan Robb, Elyse G. Schechter, Noah L. Pieper, Khalilah E. Taylor, Lily M. Pita, Runying Yang, Scott Bang, Kristina Drizyte-Miller, Sarah E. Ackermann, Sheila R. Nicewarner Peña, Elisa Baldelli, Sophia M. Min, David H. Drewry, Emanuel F. Petricoin, John P. Morris, Channing J. Der, Adrienne D. Cox, Kirsten L. Bryant","doi":"10.1158/0008-5472.can-24-1757","DOIUrl":null,"url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent growth. Inhibition of the KRAS-RAF-MEK-ERK pathway enhances autophagic flux and dependency, and concurrent treatment with the nonspecific autophagy inhibitor chloroquine (CQ) and ERK-MAPK pathway inhibitors can synergistically block PDAC growth. However, CQ is limited in terms of specificity and potency. To find alternative anti-autophagy strategies, here we performed a CRISPR-Cas9 loss-of-function screen in PDAC cell lines that identified the lipid kinase PIKfyve as a growth-promoting gene. PIKfyve inhibition by the small molecule apilimod resulted in durable growth suppression, with much greater potency than CQ treatment. PIKfyve inhibition caused lysosomal dysfunction, reduced autophagic flux, and led to the accumulation of autophagy-related proteins. Furthermore, PIKfyve inhibition blocked the compensatory increases in autophagic flux associated both with MEK inhibition and with direct RAS inhibition. Accordingly, combined inhibition of PIKfyve and the RAS-MAPK pathway showed robust growth suppression across a panel of KRAS-mutant PDAC models. Growth suppression was due, in part, to potentiated cell cycle arrest and induction of apoptosis following loss of IAP proteins. These findings indicate that concurrent inhibition of RAS and PIKfyve is a synergistic, cytotoxic combination that may represent a therapeutic strategy for PDAC.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"86 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1757","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent growth. Inhibition of the KRAS-RAF-MEK-ERK pathway enhances autophagic flux and dependency, and concurrent treatment with the nonspecific autophagy inhibitor chloroquine (CQ) and ERK-MAPK pathway inhibitors can synergistically block PDAC growth. However, CQ is limited in terms of specificity and potency. To find alternative anti-autophagy strategies, here we performed a CRISPR-Cas9 loss-of-function screen in PDAC cell lines that identified the lipid kinase PIKfyve as a growth-promoting gene. PIKfyve inhibition by the small molecule apilimod resulted in durable growth suppression, with much greater potency than CQ treatment. PIKfyve inhibition caused lysosomal dysfunction, reduced autophagic flux, and led to the accumulation of autophagy-related proteins. Furthermore, PIKfyve inhibition blocked the compensatory increases in autophagic flux associated both with MEK inhibition and with direct RAS inhibition. Accordingly, combined inhibition of PIKfyve and the RAS-MAPK pathway showed robust growth suppression across a panel of KRAS-mutant PDAC models. Growth suppression was due, in part, to potentiated cell cycle arrest and induction of apoptosis following loss of IAP proteins. These findings indicate that concurrent inhibition of RAS and PIKfyve is a synergistic, cytotoxic combination that may represent a therapeutic strategy for PDAC.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.