{"title":"A note on the local behavior of the Taylor method for stiff ODEs","authors":"Philip P. Forrier , Joan Gimeno , Àngel Jorba","doi":"10.1016/j.amc.2025.129344","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we study the behavior of the coefficients of the Taylor method when computing the numerical solution of stiff Ordinary Differential Equations. First, we derive an asymptotic formula for the growth of the stability region w.r.t. the order of the Taylor method. Then, we analyze the behavior of the Taylor coefficients of the solution when the equation is stiff. Using jet transport, we show that the coefficients computed with a floating point arithmetic of arbitrary precision have an absolute error that depends on the variational equations of the solution, which can have a dominant exponential growth in stiff problems. This is naturally related to the characterization of stiffness presented by Söderlind et al. <span><span>[32]</span></span>, and allows to discuss why explicit solvers need a stepsize reduction when dealing with stiff systems. We explore how high-order methods can alleviate this restriction when high precision computations are required. We provide numerical experiments with classical stiff problems and perform extended precision computations to demonstrate this behavior.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"496 ","pages":"Article 129344"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000712","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we study the behavior of the coefficients of the Taylor method when computing the numerical solution of stiff Ordinary Differential Equations. First, we derive an asymptotic formula for the growth of the stability region w.r.t. the order of the Taylor method. Then, we analyze the behavior of the Taylor coefficients of the solution when the equation is stiff. Using jet transport, we show that the coefficients computed with a floating point arithmetic of arbitrary precision have an absolute error that depends on the variational equations of the solution, which can have a dominant exponential growth in stiff problems. This is naturally related to the characterization of stiffness presented by Söderlind et al. [32], and allows to discuss why explicit solvers need a stepsize reduction when dealing with stiff systems. We explore how high-order methods can alleviate this restriction when high precision computations are required. We provide numerical experiments with classical stiff problems and perform extended precision computations to demonstrate this behavior.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.