cGAMP-targeting injectable hydrogel system promotes periodontal restoration by alleviating cGAS-STING pathway activation

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL Bioactive Materials Pub Date : 2025-02-13 DOI:10.1016/j.bioactmat.2025.02.010
Xiang Liu , Hua Zhang , Lei Xu , Huayu Ye , Jinghuan Huang , Jing Xiang , Yunying He , Huan Zhou , Lingli Fang , Yunyan Zhang , Xuerong Xiang , Richard D. Cannon , Ping Ji , Qiming Zhai
{"title":"cGAMP-targeting injectable hydrogel system promotes periodontal restoration by alleviating cGAS-STING pathway activation","authors":"Xiang Liu ,&nbsp;Hua Zhang ,&nbsp;Lei Xu ,&nbsp;Huayu Ye ,&nbsp;Jinghuan Huang ,&nbsp;Jing Xiang ,&nbsp;Yunying He ,&nbsp;Huan Zhou ,&nbsp;Lingli Fang ,&nbsp;Yunyan Zhang ,&nbsp;Xuerong Xiang ,&nbsp;Richard D. Cannon ,&nbsp;Ping Ji ,&nbsp;Qiming Zhai","doi":"10.1016/j.bioactmat.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>The impaired function of periodontal ligament stem cells (PDLSCs) impedes restoration of periodontal tissues. The cGAS-cGAMP-STING pathway is an innate immune pathway that sensing cytosolic double-stranded DNA (dsDNA), but its role in regulating the function of PDLSCs is still unclear. In this study, we found that mitochondrial DNA (mtDNA) was released into the cytoplasm through the mitochondrial permeability transition pore (mPTP) in PDLSCs upon inflammation, which binds to cGAS and activated the STING pathway by promoting the production of cGAMP, and ultimately impaired the osteogenic differentiation of PDLSCs. Additionally, it is first found that inflammation can down-regulate the level of the ATP-binding cassette membrane subfamily member C1 (ABCC1, a cGAMP exocellular transporter) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, a cGAMP hydrolase), which further aggravated the accumulation of intracellular cGAMP, leading to the persistent activation of the cGAS-STING pathway and thus the impaired the differentiation capacity of PDLSCs. Furthermore, we designed a hydrogel system loaded with a mPTP blocker, an ABCC1 agonist and ENPP1 to promote periodontal tissue regeneration by modulating the production, exocytosis, and clearance of cGAMP. In conclusion, our results highlight the profound effects, and specific mechanisms, of the cGAS-STING pathway on the function of stem cells and propose a new strategy to promote periodontal tissue restoration based on the reestablishment of cGAMP homeostasis.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 55-70"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000593","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impaired function of periodontal ligament stem cells (PDLSCs) impedes restoration of periodontal tissues. The cGAS-cGAMP-STING pathway is an innate immune pathway that sensing cytosolic double-stranded DNA (dsDNA), but its role in regulating the function of PDLSCs is still unclear. In this study, we found that mitochondrial DNA (mtDNA) was released into the cytoplasm through the mitochondrial permeability transition pore (mPTP) in PDLSCs upon inflammation, which binds to cGAS and activated the STING pathway by promoting the production of cGAMP, and ultimately impaired the osteogenic differentiation of PDLSCs. Additionally, it is first found that inflammation can down-regulate the level of the ATP-binding cassette membrane subfamily member C1 (ABCC1, a cGAMP exocellular transporter) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, a cGAMP hydrolase), which further aggravated the accumulation of intracellular cGAMP, leading to the persistent activation of the cGAS-STING pathway and thus the impaired the differentiation capacity of PDLSCs. Furthermore, we designed a hydrogel system loaded with a mPTP blocker, an ABCC1 agonist and ENPP1 to promote periodontal tissue regeneration by modulating the production, exocytosis, and clearance of cGAMP. In conclusion, our results highlight the profound effects, and specific mechanisms, of the cGAS-STING pathway on the function of stem cells and propose a new strategy to promote periodontal tissue restoration based on the reestablishment of cGAMP homeostasis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
期刊最新文献
Integrated biomimetic bioprinting of perichondrium with cartilage for auricle reconstruction Targeted codelivery of nitric oxide and hydrogen sulfide for enhanced antithrombosis efficacy cGAMP-targeting injectable hydrogel system promotes periodontal restoration by alleviating cGAS-STING pathway activation MiR-19-loaded oxidative stress-relief microgels with immunomodulatory and regeneration functions to reduce cardiac remodeling after myocardial infarction A natural biological adhesive from slug mucus for wound repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1