Zhengchao Yuan , Siyuan Wu , Liwen Fu , Xinyi Wang , Zewen Wang , Muhammad Shafiq , Hao Feng , Lu Han , Jiahui Song , Mohamed EL-Newehy , Meera Moydeen Abdulhameed , Yuan Xu , Xiumei Mo , Shichao Jiang
{"title":"A natural biological adhesive from slug mucus for wound repair","authors":"Zhengchao Yuan , Siyuan Wu , Liwen Fu , Xinyi Wang , Zewen Wang , Muhammad Shafiq , Hao Feng , Lu Han , Jiahui Song , Mohamed EL-Newehy , Meera Moydeen Abdulhameed , Yuan Xu , Xiumei Mo , Shichao Jiang","doi":"10.1016/j.bioactmat.2025.01.030","DOIUrl":null,"url":null,"abstract":"<div><div>Slugs could secrete mucus with multifunctional characteristics, such as reversible gelation, mucoadhesiveness, and viscoelasticity, which can be harnessed for multifaceted biotechnological and healthcare applications. The dried mucus (DM) was prepared using slug, which can be adhered to the tissue surface through different types of interactions (lap-shear force, 1.1 N for DM-3 group). The DM-3 further exhibited the highest hemostatic ability as discerned in a liver trauma injury model (hemostasis time, <15 s), biocompatibility and biodegradability (an insignificant residue at 4 weeks) <em>in vivo</em>, and considerably improved skin repair in full-thickness excisional wounds (wound closure, 96.2 % at day 14). Taken together, slug's mucus can be easily prepared with an economic and an eco-friendly method, which may have broad biotechnological and healthcare implications and potential utility in other related disciplines. This transition from natural components to the biomaterial may provide an invaluable platform for different types of applications.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"Pages 513-527"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000374","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Slugs could secrete mucus with multifunctional characteristics, such as reversible gelation, mucoadhesiveness, and viscoelasticity, which can be harnessed for multifaceted biotechnological and healthcare applications. The dried mucus (DM) was prepared using slug, which can be adhered to the tissue surface through different types of interactions (lap-shear force, 1.1 N for DM-3 group). The DM-3 further exhibited the highest hemostatic ability as discerned in a liver trauma injury model (hemostasis time, <15 s), biocompatibility and biodegradability (an insignificant residue at 4 weeks) in vivo, and considerably improved skin repair in full-thickness excisional wounds (wound closure, 96.2 % at day 14). Taken together, slug's mucus can be easily prepared with an economic and an eco-friendly method, which may have broad biotechnological and healthcare implications and potential utility in other related disciplines. This transition from natural components to the biomaterial may provide an invaluable platform for different types of applications.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.