Stefan Vogel , Ali Akbar Sarbanha , Seyed Mohammed Taghavi , Markus Schubert , Faïçal Larachi
{"title":"Precision mist injection strategy for enhanced hydrodynamic stability in oscillating bubbling fluidized beds","authors":"Stefan Vogel , Ali Akbar Sarbanha , Seyed Mohammed Taghavi , Markus Schubert , Faïçal Larachi","doi":"10.1016/j.powtec.2025.120770","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates precision mist injection into a cuboidal pseudo-2D fluidized bed on a robotic sea wave simulator to stabilize bubbling and homogenize hydrodynamics under 9° inclination and 0.1 Hz rolling motion. Digital image analysis and particle image velocimetry are used to evaluate the effects of mist injection on defluidization, void fraction, particle motion, and fluidization regime changes. Liquid injection effectively reduces bubble and slug sizes and controls particle velocities without causing defluidization/agglomeration. Symmetric injection is ineffective in inclined beds and does not significantly reduce slug size in rolling beds, but does reduce bubble size. Asymmetric injection consistently performs better, especially in rolling conditions, by reducing bubble size and velocity and reducing slugging. Double point injection proves to be the most reliable and significantly reduces bed maldistribution in rolling configurations. These results suggest potential offshore applications, where mist-induced surface changes reduce sensitivity to sea-like motion.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"455 ","pages":"Article 120770"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025001652","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates precision mist injection into a cuboidal pseudo-2D fluidized bed on a robotic sea wave simulator to stabilize bubbling and homogenize hydrodynamics under 9° inclination and 0.1 Hz rolling motion. Digital image analysis and particle image velocimetry are used to evaluate the effects of mist injection on defluidization, void fraction, particle motion, and fluidization regime changes. Liquid injection effectively reduces bubble and slug sizes and controls particle velocities without causing defluidization/agglomeration. Symmetric injection is ineffective in inclined beds and does not significantly reduce slug size in rolling beds, but does reduce bubble size. Asymmetric injection consistently performs better, especially in rolling conditions, by reducing bubble size and velocity and reducing slugging. Double point injection proves to be the most reliable and significantly reduces bed maldistribution in rolling configurations. These results suggest potential offshore applications, where mist-induced surface changes reduce sensitivity to sea-like motion.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.