Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity
{"title":"Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity","authors":"Wolfgang Peti , Sathish K.R. Padi , Rebecca Page","doi":"10.1016/j.sbi.2025.102992","DOIUrl":null,"url":null,"abstract":"<div><div>Protein phosphatases are dynamic enzymes that exhibit complex regulatory mechanisms, with disruptions in these regulatory processes associated with disease. It is now clear that many phosphatases assemble into large macromolecular complexes via the interaction of phosphatase-specific regulatory proteins and substrates containing short linear motifs (SLiMs) or short helical motifs (SHelMs). Here, we review how cryo-electron microscopy (cryo-EM) integrated with orthogonal methods to study dynamic protein–protein interactions (NMR spectroscopy, hydrogen-deuterium exchange mass spectrometry, among others) is leading to new discoveries about the mechanisms controlling phosphatase assembly, substrate recruitment and dephosphorylation and, in turn, are providing novel strategies for targeting phosphatase-related diseases. This review focuses on the recently determined structures and regulation of the phosphoprotein phosphatase (PPP) family of ser/thr phosphatases—PP1, PP2A, Calcineurin and PP5.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 102992"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000107","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein phosphatases are dynamic enzymes that exhibit complex regulatory mechanisms, with disruptions in these regulatory processes associated with disease. It is now clear that many phosphatases assemble into large macromolecular complexes via the interaction of phosphatase-specific regulatory proteins and substrates containing short linear motifs (SLiMs) or short helical motifs (SHelMs). Here, we review how cryo-electron microscopy (cryo-EM) integrated with orthogonal methods to study dynamic protein–protein interactions (NMR spectroscopy, hydrogen-deuterium exchange mass spectrometry, among others) is leading to new discoveries about the mechanisms controlling phosphatase assembly, substrate recruitment and dephosphorylation and, in turn, are providing novel strategies for targeting phosphatase-related diseases. This review focuses on the recently determined structures and regulation of the phosphoprotein phosphatase (PPP) family of ser/thr phosphatases—PP1, PP2A, Calcineurin and PP5.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation