Ranking economic and environmental performance of feedstocks used in bio-based production systems

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2025-01-01 DOI:10.1016/j.crbiot.2025.100275
Dania Muhieddine Orfali , Samir Meramo , Sumesh Sukumara
{"title":"Ranking economic and environmental performance of feedstocks used in bio-based production systems","authors":"Dania Muhieddine Orfali ,&nbsp;Samir Meramo ,&nbsp;Sumesh Sukumara","doi":"10.1016/j.crbiot.2025.100275","DOIUrl":null,"url":null,"abstract":"<div><div>Biotechnology offers renewable alternatives for producing food, materials, and numerous functional compounds. While rampant human activities are disrupting planets’ geophysical flows, it is urgent to develop sustainable solutions with novel feedstocks and innovative valorization pathways. With the need to reduce greenhouse gas emissions and enhance circularity, new raw materials termed the next-generation feedstocks (<em>NGFs</em>), such as carbon dioxide, methane, methanol, formic acid, and acetic acid, have emerged as potential feedstocks for bio-based processes. So far, no such review exists that compares the performance of conventional, sugar, lignocellulosic, algae-based feedstocks, and <em>NGFs</em>, which biotechnology could upcycle into a wide range of products. In this review, the economic and environmental performances of the feedstocks are analyzed, and quantifications are presented and standardized based on techno-economic analysis and life cycle assessment models. The main parameters for comparison included the geographical location, unit production cost, and environmental impact categories. The results show that the economic and environmental performances are highly variable among the different feedstocks and their processing routes, also depicting evident tradeoffs. Carbon dioxide, sugar cane molasses and glycerol from waste streams are performing better on assessed indicators overall than other potential feedstocks. Nonetheless, this designed data source is the first step for reliable feedstock selection based on sustainability criteria.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100275"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262825000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biotechnology offers renewable alternatives for producing food, materials, and numerous functional compounds. While rampant human activities are disrupting planets’ geophysical flows, it is urgent to develop sustainable solutions with novel feedstocks and innovative valorization pathways. With the need to reduce greenhouse gas emissions and enhance circularity, new raw materials termed the next-generation feedstocks (NGFs), such as carbon dioxide, methane, methanol, formic acid, and acetic acid, have emerged as potential feedstocks for bio-based processes. So far, no such review exists that compares the performance of conventional, sugar, lignocellulosic, algae-based feedstocks, and NGFs, which biotechnology could upcycle into a wide range of products. In this review, the economic and environmental performances of the feedstocks are analyzed, and quantifications are presented and standardized based on techno-economic analysis and life cycle assessment models. The main parameters for comparison included the geographical location, unit production cost, and environmental impact categories. The results show that the economic and environmental performances are highly variable among the different feedstocks and their processing routes, also depicting evident tradeoffs. Carbon dioxide, sugar cane molasses and glycerol from waste streams are performing better on assessed indicators overall than other potential feedstocks. Nonetheless, this designed data source is the first step for reliable feedstock selection based on sustainability criteria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Gut health improvement by locally isolated probiotics and histomorphometric analysis in Wistar rats Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations Importance of substrate type and its constituents on overall performance of microbial fuel cells Curcumol inhibits hepatocellular carcinoma proliferation through miRNA-124/STAT3 pathway: Network pharmacology and experimental validation A systematic review on Indian Acacia species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1