Spatial transferability of machine learning based models for ride-hailing demand prediction

IF 6.3 1区 工程技术 Q1 ECONOMICS Transportation Research Part A-Policy and Practice Pub Date : 2025-02-13 DOI:10.1016/j.tra.2025.104413
Sudipta Roy , Bat-hen Nahmias-Biran , Samiul Hasan
{"title":"Spatial transferability of machine learning based models for ride-hailing demand prediction","authors":"Sudipta Roy ,&nbsp;Bat-hen Nahmias-Biran ,&nbsp;Samiul Hasan","doi":"10.1016/j.tra.2025.104413","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of ride-hailing demand is crucial to provide quality service to consumers, to effectively schedule vehicles, and to maintain a well-functioning transportation system. As information of ride-hailing demand in most of the cities is not available, assessing the spatial transferability of ride-hailing demand models is an important research problem. To address this problem, this study aims to develop a ride-hailing demand prediction model using trip information available from ride-hailing service providers and to test the spatial transferability of the model. Using aggregated trip data, we have developed ride-hailing generation and attraction prediction models using several well-known machine learning algorithms such as random forest, extreme gradient boost, support vector machine, and artificial neural network for two study areas including the New York City and Chicago with similar built environment and land use characteristics. The random forest and extreme gradient boost models have superior performance for predicting ride-hailing demand with both the training and testing data in the intra-city level. The developed models for the New York City are later used to predict the ride-hailing demand of Chicago using two different transfer learning approaches. A knowledge transfer approach shows better transferability potential of ride-hailing demand models with reduced error rates. An analysis of prediction errors suggests that the models achieve better accuracy to predict demand on areas near central business districts or during peak periods.</div></div>","PeriodicalId":49421,"journal":{"name":"Transportation Research Part A-Policy and Practice","volume":"193 ","pages":"Article 104413"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part A-Policy and Practice","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965856425000412","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of ride-hailing demand is crucial to provide quality service to consumers, to effectively schedule vehicles, and to maintain a well-functioning transportation system. As information of ride-hailing demand in most of the cities is not available, assessing the spatial transferability of ride-hailing demand models is an important research problem. To address this problem, this study aims to develop a ride-hailing demand prediction model using trip information available from ride-hailing service providers and to test the spatial transferability of the model. Using aggregated trip data, we have developed ride-hailing generation and attraction prediction models using several well-known machine learning algorithms such as random forest, extreme gradient boost, support vector machine, and artificial neural network for two study areas including the New York City and Chicago with similar built environment and land use characteristics. The random forest and extreme gradient boost models have superior performance for predicting ride-hailing demand with both the training and testing data in the intra-city level. The developed models for the New York City are later used to predict the ride-hailing demand of Chicago using two different transfer learning approaches. A knowledge transfer approach shows better transferability potential of ride-hailing demand models with reduced error rates. An analysis of prediction errors suggests that the models achieve better accuracy to predict demand on areas near central business districts or during peak periods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.20
自引率
7.80%
发文量
257
审稿时长
9.8 months
期刊介绍: Transportation Research: Part A contains papers of general interest in all passenger and freight transportation modes: policy analysis, formulation and evaluation; planning; interaction with the political, socioeconomic and physical environment; design, management and evaluation of transportation systems. Topics are approached from any discipline or perspective: economics, engineering, sociology, psychology, etc. Case studies, survey and expository papers are included, as are articles which contribute to unification of the field, or to an understanding of the comparative aspects of different systems. Papers which assess the scope for technological innovation within a social or political framework are also published. The journal is international, and places equal emphasis on the problems of industrialized and non-industrialized regions. Part A''s aims and scope are complementary to Transportation Research Part B: Methodological, Part C: Emerging Technologies and Part D: Transport and Environment. Part E: Logistics and Transportation Review. Part F: Traffic Psychology and Behaviour. The complete set forms the most cohesive and comprehensive reference of current research in transportation science.
期刊最新文献
Spatial transferability of machine learning based models for ride-hailing demand prediction Is mobility transition driven by wealth inequality? Evidence from analysis of the electric two-wheelers adoption in India Optimizing transit service headways and planning activity location with carbon credit charge scheme: An activity-based approach A multi-objective model for fair location of stations and geofence parking area to address disorderly parking in free-floating micromobility systems Home delivery vs. out-of-home delivery: Syncretic value-based strategies for urban last-mile e-commerce logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1