Kamil Riedel , Robert L. Vollum , Glen Rust , Jean Paul Vella , Bassam Izzuddin
{"title":"Design and behaviour of moment resisting precast concrete connections with cast-in shear fasteners","authors":"Kamil Riedel , Robert L. Vollum , Glen Rust , Jean Paul Vella , Bassam Izzuddin","doi":"10.1016/j.engstruct.2025.119886","DOIUrl":null,"url":null,"abstract":"<div><div>The paper proposes a novel design procedure for an innovative connector that provides flexural continuity between ribbed precast concrete flooring units. The innovation was driven by the goal of rapid onsite assembly which precluded the use of structural toppings, complex in-situ stitching of projecting bars or onsite welding. Assembly on site is a simple process of bringing the precast elements together on temporary supports and grouting the prefabricated steel connectors into well-voids cast into the member ends. The benefits of the developed connection have been successfully demonstrated within a number of full-scale prototypes. Due to the novel and unconventional form of the proposed connector, physical testing was crucial to provide an in-depth understanding of its response characteristics under serviceability and ultimate loading conditions. Towards this end, three full size specimens were tested to failure under four-point bending. The outcomes of these experiments are used to validate 3-D high-fidelity nonlinear finite element analysis models. These are finally used in a wide-ranging study to demonstrate the applicability of the proposed design procedure for this novel precast concrete connection system.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"330 ","pages":"Article 119886"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625002767","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a novel design procedure for an innovative connector that provides flexural continuity between ribbed precast concrete flooring units. The innovation was driven by the goal of rapid onsite assembly which precluded the use of structural toppings, complex in-situ stitching of projecting bars or onsite welding. Assembly on site is a simple process of bringing the precast elements together on temporary supports and grouting the prefabricated steel connectors into well-voids cast into the member ends. The benefits of the developed connection have been successfully demonstrated within a number of full-scale prototypes. Due to the novel and unconventional form of the proposed connector, physical testing was crucial to provide an in-depth understanding of its response characteristics under serviceability and ultimate loading conditions. Towards this end, three full size specimens were tested to failure under four-point bending. The outcomes of these experiments are used to validate 3-D high-fidelity nonlinear finite element analysis models. These are finally used in a wide-ranging study to demonstrate the applicability of the proposed design procedure for this novel precast concrete connection system.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.