Emily Royal , Soutir Bandyopadhyay , Alexandra Newman , Qiuhua Huang , Paulo Cesar Tabares-Velasco
{"title":"A statistical framework for district energy long-term electric load forecasting","authors":"Emily Royal , Soutir Bandyopadhyay , Alexandra Newman , Qiuhua Huang , Paulo Cesar Tabares-Velasco","doi":"10.1016/j.apenergy.2025.125445","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate forecast of electric demand is essential for the optimal design of a generation system. For district installations, the projected lifespan may extend one or two decades. The reliance on a single-year forecast, combined with a fixed load growth rate, is the current industry standard, but does not support a multi-decade investment. Existing work on long-term forecasting focuses on annual growth rate and/or uses time resolution that is coarser than hourly. To address the gap, we propose multiple statistical forecast models, verified over as long as an 11-year horizon. Combining demand data, weather data, and occupancy trends results in a hybrid statistical model, i.e., generalized additive model (GAM) with a seasonal autoregressive integrated moving average (SARIMA) of the GAM residuals, a multiple linear regression (MLR) model, and a GAM with ARIMA errors model. We evaluate accuracy based on: (i) annual growth rates of monthly peak loads; (ii) annual growth rates of overall energy consumption; (iii) preservation of daily, weekly, and month-to-month trends that occur within each year, known as the “seasonality” of the data; and, (iv) realistic representation of demand for a full range of weather and occupancy conditions. For example, the models yield an 11-year forecast from a one-year training data set with a normalized root mean square error of 9.091%, a six-year forecast from a one-year training data set with a normalized root mean square error of 8.949%, and a one-year forecast from a 1.2-year training data set with a normalized root mean square error of 6.765%.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125445"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An accurate forecast of electric demand is essential for the optimal design of a generation system. For district installations, the projected lifespan may extend one or two decades. The reliance on a single-year forecast, combined with a fixed load growth rate, is the current industry standard, but does not support a multi-decade investment. Existing work on long-term forecasting focuses on annual growth rate and/or uses time resolution that is coarser than hourly. To address the gap, we propose multiple statistical forecast models, verified over as long as an 11-year horizon. Combining demand data, weather data, and occupancy trends results in a hybrid statistical model, i.e., generalized additive model (GAM) with a seasonal autoregressive integrated moving average (SARIMA) of the GAM residuals, a multiple linear regression (MLR) model, and a GAM with ARIMA errors model. We evaluate accuracy based on: (i) annual growth rates of monthly peak loads; (ii) annual growth rates of overall energy consumption; (iii) preservation of daily, weekly, and month-to-month trends that occur within each year, known as the “seasonality” of the data; and, (iv) realistic representation of demand for a full range of weather and occupancy conditions. For example, the models yield an 11-year forecast from a one-year training data set with a normalized root mean square error of 9.091%, a six-year forecast from a one-year training data set with a normalized root mean square error of 8.949%, and a one-year forecast from a 1.2-year training data set with a normalized root mean square error of 6.765%.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.