A statistical framework for district energy long-term electric load forecasting

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2025-02-13 DOI:10.1016/j.apenergy.2025.125445
Emily Royal , Soutir Bandyopadhyay , Alexandra Newman , Qiuhua Huang , Paulo Cesar Tabares-Velasco
{"title":"A statistical framework for district energy long-term electric load forecasting","authors":"Emily Royal ,&nbsp;Soutir Bandyopadhyay ,&nbsp;Alexandra Newman ,&nbsp;Qiuhua Huang ,&nbsp;Paulo Cesar Tabares-Velasco","doi":"10.1016/j.apenergy.2025.125445","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate forecast of electric demand is essential for the optimal design of a generation system. For district installations, the projected lifespan may extend one or two decades. The reliance on a single-year forecast, combined with a fixed load growth rate, is the current industry standard, but does not support a multi-decade investment. Existing work on long-term forecasting focuses on annual growth rate and/or uses time resolution that is coarser than hourly. To address the gap, we propose multiple statistical forecast models, verified over as long as an 11-year horizon. Combining demand data, weather data, and occupancy trends results in a hybrid statistical model, i.e., generalized additive model (GAM) with a seasonal autoregressive integrated moving average (SARIMA) of the GAM residuals, a multiple linear regression (MLR) model, and a GAM with ARIMA errors model. We evaluate accuracy based on: (i) annual growth rates of monthly peak loads; (ii) annual growth rates of overall energy consumption; (iii) preservation of daily, weekly, and month-to-month trends that occur within each year, known as the “seasonality” of the data; and, (iv) realistic representation of demand for a full range of weather and occupancy conditions. For example, the models yield an 11-year forecast from a one-year training data set with a normalized root mean square error of 9.091%, a six-year forecast from a one-year training data set with a normalized root mean square error of 8.949%, and a one-year forecast from a 1.2-year training data set with a normalized root mean square error of 6.765%.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125445"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate forecast of electric demand is essential for the optimal design of a generation system. For district installations, the projected lifespan may extend one or two decades. The reliance on a single-year forecast, combined with a fixed load growth rate, is the current industry standard, but does not support a multi-decade investment. Existing work on long-term forecasting focuses on annual growth rate and/or uses time resolution that is coarser than hourly. To address the gap, we propose multiple statistical forecast models, verified over as long as an 11-year horizon. Combining demand data, weather data, and occupancy trends results in a hybrid statistical model, i.e., generalized additive model (GAM) with a seasonal autoregressive integrated moving average (SARIMA) of the GAM residuals, a multiple linear regression (MLR) model, and a GAM with ARIMA errors model. We evaluate accuracy based on: (i) annual growth rates of monthly peak loads; (ii) annual growth rates of overall energy consumption; (iii) preservation of daily, weekly, and month-to-month trends that occur within each year, known as the “seasonality” of the data; and, (iv) realistic representation of demand for a full range of weather and occupancy conditions. For example, the models yield an 11-year forecast from a one-year training data set with a normalized root mean square error of 9.091%, a six-year forecast from a one-year training data set with a normalized root mean square error of 8.949%, and a one-year forecast from a 1.2-year training data set with a normalized root mean square error of 6.765%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
A novel multivariable prognostic approach for PEMFC degradation and remaining useful life prediction using random forest and temporal convolutional network Bi-level Integrated Electricity and Natural Gas System retrofit planning model considering Carbon Capture, Utilization and Storage Experimental and simulation study on internal thermal runaway development drives venting and flammable gas risk evaluate of Lithium-ion battery Parallel-Execute-Based Real-time Energy Management Strategy for FTPSS integrated PV and ESS State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1