Mechanisms behind the Aschenbach effect in non-rotating black hole spacetime

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annals of Physics Pub Date : 2025-02-11 DOI:10.1016/j.aop.2025.169953
Mohammad Ali S. Afshar, Jafar Sadeghi
{"title":"Mechanisms behind the Aschenbach effect in non-rotating black hole spacetime","authors":"Mohammad Ali S. Afshar,&nbsp;Jafar Sadeghi","doi":"10.1016/j.aop.2025.169953","DOIUrl":null,"url":null,"abstract":"<div><div>General relativity predicts that a rotating black hole drags the spacetime due to its spin. This effect can influence the motion of nearby objects, causing them to either fall into the black hole or orbit around it. In classical Newtonian mechanics, as the radius (r) of the orbit increases, the angular velocity (<span><math><mi>Ω</mi></math></span>) of an object in a stable circular orbit decreases. However, Aschenbach discovered that for a hypothetical non-rotating observer, contrary to usual behavior, the angular velocity increases with radius in certain regions (Aschenbach, 2004). Although the possibility of observing rare and less probable ”rotational” behaviors in a rotating structure is not unlikely or impossible. However, observing such behaviors in a “static” structure is not only intriguing but also thought-provoking, as it raises questions about the factors that might play a role in such phenomena. In seeking answers to this question, various static models, particularly in the context of nonlinear fields, were examined, with some results presented as examples in the article. Among the models studied, the model of Magnetic Black Holes in 4D Einstein–Gauss–Bonnet Massive Gravity Coupled to Nonlinear Electrodynamics (M-EGB-Massive) appears to be a candidate for this phenomenon. In the analysis section, we will discuss the commonalities of this model with previous models that have exhibited this phenomenon and examine the cause of this phenomenon. Finally, we will state whether this phenomenon is observable in other black holes and, if not, why.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"474 ","pages":"Article 169953"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000349162500034X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

General relativity predicts that a rotating black hole drags the spacetime due to its spin. This effect can influence the motion of nearby objects, causing them to either fall into the black hole or orbit around it. In classical Newtonian mechanics, as the radius (r) of the orbit increases, the angular velocity (Ω) of an object in a stable circular orbit decreases. However, Aschenbach discovered that for a hypothetical non-rotating observer, contrary to usual behavior, the angular velocity increases with radius in certain regions (Aschenbach, 2004). Although the possibility of observing rare and less probable ”rotational” behaviors in a rotating structure is not unlikely or impossible. However, observing such behaviors in a “static” structure is not only intriguing but also thought-provoking, as it raises questions about the factors that might play a role in such phenomena. In seeking answers to this question, various static models, particularly in the context of nonlinear fields, were examined, with some results presented as examples in the article. Among the models studied, the model of Magnetic Black Holes in 4D Einstein–Gauss–Bonnet Massive Gravity Coupled to Nonlinear Electrodynamics (M-EGB-Massive) appears to be a candidate for this phenomenon. In the analysis section, we will discuss the commonalities of this model with previous models that have exhibited this phenomenon and examine the cause of this phenomenon. Finally, we will state whether this phenomenon is observable in other black holes and, if not, why.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
期刊最新文献
Corrigendum to “On the Emergent “Quantum” Theory in Complex Adaptive Systems” [Ann. Phys. 464 (2024) 169641] Mechanisms behind the Aschenbach effect in non-rotating black hole spacetime Universal behaviors of dynamical quantum transition in trapped large spin fermions Stars and quark stars in bumblebee gravity Noncommutative black hole in de Rham-Gabadadze-Tolley like massive gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1