Kaveh Roshanbinfar , Austin Donnelly Evans , Sumanta Samanta , Maria Kolesnik-Gray , Maren Fiedler , Vojislav Krstic , Felix B. Engel , Oommen P. Oommen
{"title":"Enhancing biofabrication: Shrink-resistant collagen-hyaluronan composite hydrogel for tissue engineering and 3D bioprinting applications","authors":"Kaveh Roshanbinfar , Austin Donnelly Evans , Sumanta Samanta , Maria Kolesnik-Gray , Maren Fiedler , Vojislav Krstic , Felix B. Engel , Oommen P. Oommen","doi":"10.1016/j.biomaterials.2025.123174","DOIUrl":null,"url":null,"abstract":"<div><div>Biofabrication represents a promising technique for creating tissues for regeneration or as models for drug testing. Collagen-based hydrogels are widely used as suitable matrix owing to their biocompatibility and tunable mechanical properties. However, one major challenge is that the encapsulated cells interact with the collagen matrix causing construct shrinkage. Here, we present a hydrogel with high shape fidelity, mimicking the major components of the extracellular matrix. We engineered a composite hydrogel comprising gallic acid (GA)-functionalized hyaluronic acid (HA), collagen I, and HA-coated multiwall carbon nanotubes (MWCNT). This hydrogel supports cell encapsulation, exhibits shear-thinning properties enhancing injectability and printability, and importantly significantly mitigates shrinkage when loaded with human fibroblasts compared to collagen I hydrogels (∼20 % vs. > 90 %). 3D-bioprinted rings utilizing human fibroblast-loaded inks maintain their shape over 7 days in culture. Furthermore, inclusion of HAGA into collagen I hydrogels increases mechanical stiffness, radical scavenging capability, and tissue adhesiveness. Notably, the here developed hydrogel is also suitable for human induced pluripotent stem cell-derived cardiomyocytes and allows printing of functional heart ventricles responsive to pharmacological treatment. Cardiomyocytes behave similar in the newly developed hydrogels compared to collagen I, based on survival, sarcomere appearance, and calcium handling. Collectively, we developed a novel material to overcome the challenge of post-fabrication matrix shrinkage conferring high shape fidelity.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123174"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000936","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biofabrication represents a promising technique for creating tissues for regeneration or as models for drug testing. Collagen-based hydrogels are widely used as suitable matrix owing to their biocompatibility and tunable mechanical properties. However, one major challenge is that the encapsulated cells interact with the collagen matrix causing construct shrinkage. Here, we present a hydrogel with high shape fidelity, mimicking the major components of the extracellular matrix. We engineered a composite hydrogel comprising gallic acid (GA)-functionalized hyaluronic acid (HA), collagen I, and HA-coated multiwall carbon nanotubes (MWCNT). This hydrogel supports cell encapsulation, exhibits shear-thinning properties enhancing injectability and printability, and importantly significantly mitigates shrinkage when loaded with human fibroblasts compared to collagen I hydrogels (∼20 % vs. > 90 %). 3D-bioprinted rings utilizing human fibroblast-loaded inks maintain their shape over 7 days in culture. Furthermore, inclusion of HAGA into collagen I hydrogels increases mechanical stiffness, radical scavenging capability, and tissue adhesiveness. Notably, the here developed hydrogel is also suitable for human induced pluripotent stem cell-derived cardiomyocytes and allows printing of functional heart ventricles responsive to pharmacological treatment. Cardiomyocytes behave similar in the newly developed hydrogels compared to collagen I, based on survival, sarcomere appearance, and calcium handling. Collectively, we developed a novel material to overcome the challenge of post-fabrication matrix shrinkage conferring high shape fidelity.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.