DECEN: A deep learning model enhanced by depressive emotions for depression detection from social media content

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2025-02-10 DOI:10.1016/j.dss.2025.114421
Zhijun Yan , Fei Peng , Dongsong Zhang
{"title":"DECEN: A deep learning model enhanced by depressive emotions for depression detection from social media content","authors":"Zhijun Yan ,&nbsp;Fei Peng ,&nbsp;Dongsong Zhang","doi":"10.1016/j.dss.2025.114421","DOIUrl":null,"url":null,"abstract":"<div><div>Depression is a serious and recurrent mental illness that significantly affects an individual's life and the society as a whole. Automatic detection of depression is crucial for early intervention and minimizing negative consequences. Existing studies on building deep learning models for automated depression detection have mainly used post-level emotion polarity (i.e., positive and negative emotions) and word embeddings as predictive features. Few have considered depressive emotions (e.g., anhedonia) expressed in those posts, despite that depressive emotions are essential to clinical depression diagnosis. Moreover, existing approaches for depression detection often ignore the relationship between emotions and their context. This study proposes a Depressive Emotion-Context Enhanced Network (DECEN) that consists of a pre-trained depressive emotion recognition module and an emotion-context enhanced representation module to address those limitations. DECEN first integrates semantic and syntactic structure representations of textual content of social media posts to identify depressive emotions conveyed through terms either explicitly or implicitly, rather than general emotion words. Furthermore, we propose an emotion-context enhanced representation method to enhance the role of the context of depressive emotions in depression detection. The evaluation using real social media data demonstrates that DECEN outperforms the state-of-the-art models in depression detection. The results of an ablation experiment also reveal that the proposed depressive emotion recognition and emotion-context enhanced representation modules, the two novel design artifacts, improve model performance. This study contributes to depression diagnostic decisions by introducing a novel method and providing new technical and practical insights for detecting depression from social media content.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"191 ","pages":"Article 114421"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000223","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Depression is a serious and recurrent mental illness that significantly affects an individual's life and the society as a whole. Automatic detection of depression is crucial for early intervention and minimizing negative consequences. Existing studies on building deep learning models for automated depression detection have mainly used post-level emotion polarity (i.e., positive and negative emotions) and word embeddings as predictive features. Few have considered depressive emotions (e.g., anhedonia) expressed in those posts, despite that depressive emotions are essential to clinical depression diagnosis. Moreover, existing approaches for depression detection often ignore the relationship between emotions and their context. This study proposes a Depressive Emotion-Context Enhanced Network (DECEN) that consists of a pre-trained depressive emotion recognition module and an emotion-context enhanced representation module to address those limitations. DECEN first integrates semantic and syntactic structure representations of textual content of social media posts to identify depressive emotions conveyed through terms either explicitly or implicitly, rather than general emotion words. Furthermore, we propose an emotion-context enhanced representation method to enhance the role of the context of depressive emotions in depression detection. The evaluation using real social media data demonstrates that DECEN outperforms the state-of-the-art models in depression detection. The results of an ablation experiment also reveal that the proposed depressive emotion recognition and emotion-context enhanced representation modules, the two novel design artifacts, improve model performance. This study contributes to depression diagnostic decisions by introducing a novel method and providing new technical and practical insights for detecting depression from social media content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
Exploring the impact of free live-streamed medical consultation on patient engagement and patient satisfaction in the multistage online consultation process: A quasi-experimental design DECEN: A deep learning model enhanced by depressive emotions for depression detection from social media content Editorial Board Is seeing the same as doing? An evaluation of vicarious experiences in the metaverse A deep learning–based method to predict the length of stay for patients with traumatic fall injuries in support of physicians' clinical decisions and patient management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1