{"title":"Multi-resolution reconstruction of longitudinal streambed footprints using embedded sparse convolutional autoencoders","authors":"Yifan Yang , Zihao Tang , Dong Shao , Zhonghou Xu","doi":"10.1016/j.jhydrol.2025.132852","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an embedded convolutional autoencoder (CAE) architecture designed for the multi-resolution reconstruction of longitudinal streambed footprints as sparse heatmaps. Three standalone but interrelated CAEs are trained to achieve double-upsampling, enhancing the heatmaps’ spatial resolution and data measurement resolution simultaneously. Transfer learning improves model training efficiency by incorporating a trained model into a larger model at the next level. Cascading the CAEs facilitates a direct pathway for enhancing data quality from the coarsest inputs and recovering fine-grained patterns. Systematic evaluations prove the CAEs’ reliability in working individually and collectively. Robustness analyses demonstrate the model’s ability to retain field reconstructive quality when subjected to various corrupted inputs, including bulk data loss and spiky noise interference with local measurements at different streambed sections. The model’s capacity benefitted from including attention mechanisms (convolutional block attention modules, CBAM) and the adaptive training strategy using crafted loss functions, ensuring efficient extraction and learning of sparse dense patterns and fast reconstruction of physically sound fields. The model architecture’s flexibility and scalability are highlighted, proving it suitable for more complex geophysical systems with higher dimensions. The proposed embedded CAE architecture provides a foundational tool for creating digital surrogates of river courses and similar entities, which often involve inherently sparsely distributive data in both spatial and temporal domains.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"654 ","pages":"Article 132852"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425001908","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an embedded convolutional autoencoder (CAE) architecture designed for the multi-resolution reconstruction of longitudinal streambed footprints as sparse heatmaps. Three standalone but interrelated CAEs are trained to achieve double-upsampling, enhancing the heatmaps’ spatial resolution and data measurement resolution simultaneously. Transfer learning improves model training efficiency by incorporating a trained model into a larger model at the next level. Cascading the CAEs facilitates a direct pathway for enhancing data quality from the coarsest inputs and recovering fine-grained patterns. Systematic evaluations prove the CAEs’ reliability in working individually and collectively. Robustness analyses demonstrate the model’s ability to retain field reconstructive quality when subjected to various corrupted inputs, including bulk data loss and spiky noise interference with local measurements at different streambed sections. The model’s capacity benefitted from including attention mechanisms (convolutional block attention modules, CBAM) and the adaptive training strategy using crafted loss functions, ensuring efficient extraction and learning of sparse dense patterns and fast reconstruction of physically sound fields. The model architecture’s flexibility and scalability are highlighted, proving it suitable for more complex geophysical systems with higher dimensions. The proposed embedded CAE architecture provides a foundational tool for creating digital surrogates of river courses and similar entities, which often involve inherently sparsely distributive data in both spatial and temporal domains.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.