Jielong Rao , Liyu Yi , Yong Wan , Tiande Wen , Zhixiang Chen
{"title":"Dual effects of supergravity deformation and suction deformation on the determination of soil water characteristic curve by centrifugal testing method","authors":"Jielong Rao , Liyu Yi , Yong Wan , Tiande Wen , Zhixiang Chen","doi":"10.1016/j.still.2025.106495","DOIUrl":null,"url":null,"abstract":"<div><div>The centrifugal testing method for the soil water characteristic curve (SWCC) has found widely used in the fields of soil science, geology, and geotechnical engineering. However, the deformation of samples during the centrifuge testing process, resulting from the combination of matric suction (Ψ) and centrifugal force, introduces an error when compared to other SWCC testing methods. To quantify the influence of sample supergravity deformation on matric suction testing in centrifugal testing methods, a novel combined centrifuge-drying shrinkage testing method is proposed to differentiate the deformations caused by supergravity and Ψ during the centrifugal testing process. Meanwhile, the influence of different deformations on the SWCC of the soil was analyzed. On this basis, the scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests were conducted to explain the inherent mechanism of the centrifuge influence on soil water retention and deformation behaviors under supergravity conditions. The results indicate that, the drying shrinkage rule of the soil is different from the existing test rule. The SWCCs of soils with different initial dry densities (<em>ρ</em><sub>d</sub>) obtained through the combined centrifuge-drying shrinkage testing method follow the same desiccation path. Microscopic morphology and pore size analysis revealed significant influences of centrifuge dynamic disturbance and supergravity environment have great influence on soil pore structure during dehumidification.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"249 ","pages":"Article 106495"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198725000492","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The centrifugal testing method for the soil water characteristic curve (SWCC) has found widely used in the fields of soil science, geology, and geotechnical engineering. However, the deformation of samples during the centrifuge testing process, resulting from the combination of matric suction (Ψ) and centrifugal force, introduces an error when compared to other SWCC testing methods. To quantify the influence of sample supergravity deformation on matric suction testing in centrifugal testing methods, a novel combined centrifuge-drying shrinkage testing method is proposed to differentiate the deformations caused by supergravity and Ψ during the centrifugal testing process. Meanwhile, the influence of different deformations on the SWCC of the soil was analyzed. On this basis, the scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests were conducted to explain the inherent mechanism of the centrifuge influence on soil water retention and deformation behaviors under supergravity conditions. The results indicate that, the drying shrinkage rule of the soil is different from the existing test rule. The SWCCs of soils with different initial dry densities (ρd) obtained through the combined centrifuge-drying shrinkage testing method follow the same desiccation path. Microscopic morphology and pore size analysis revealed significant influences of centrifuge dynamic disturbance and supergravity environment have great influence on soil pore structure during dehumidification.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.