Geometric-aware deep learning enables discovery of bifunctional ligand-based liposomes for tumor targeting therapy

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-02-13 DOI:10.1016/j.nantod.2025.102668
Jiaxuan Xia , Zicheng Gan , Jixian Zhang , Meichen Dong , Shengyao Liu , Bangchun Cui , Pengcheng Guo , Zhiqing Pang , Tun Lu , Ning Gu , Defang Ouyang , Chengtao Li , Shuangjia Zheng , Jianxin Wang
{"title":"Geometric-aware deep learning enables discovery of bifunctional ligand-based liposomes for tumor targeting therapy","authors":"Jiaxuan Xia ,&nbsp;Zicheng Gan ,&nbsp;Jixian Zhang ,&nbsp;Meichen Dong ,&nbsp;Shengyao Liu ,&nbsp;Bangchun Cui ,&nbsp;Pengcheng Guo ,&nbsp;Zhiqing Pang ,&nbsp;Tun Lu ,&nbsp;Ning Gu ,&nbsp;Defang Ouyang ,&nbsp;Chengtao Li ,&nbsp;Shuangjia Zheng ,&nbsp;Jianxin Wang","doi":"10.1016/j.nantod.2025.102668","DOIUrl":null,"url":null,"abstract":"<div><div>Limited tumor targeting capacity of conventional liposomes compromises their clinical outcomes in tumor therapy. Although ligand-based liposomes show promise for improved tumor targeting efficiency, their transition to clinical use is impeded by the complexity of necessary ligand modifications on liposomal membranes. Certain bifunctional natural products, offering both liposomal membrane-regulating and tumor-targeting ligands properties, have shown tumor targeting potential after prepared into liposomes without the need for ligands synthesis, but their discovery has been hindered by the constraints of conventional screening methods. Here, we propose combining deep learning with wet experimentation for rapid discovery of new bifunctional ligands. Utilizing pre-trained geometric-aware neural networks, we simultaneously modeled predictions for membrane-regulating and glucose transporter 1-ligand functions. The trained models identified nine top candidates from &gt; 300,000 natural products, six of which demonstrated the anticipated dual functionality upon experimental validation. The lead liposome, Ilexgenin A (Ile)-based liposome, demonstrated superior tumor-targeting and anti-tumor effect compared to the existing bifunctional ligand-based liposome. Further analysis elucidated Ile's mechanisms in immunoregulation and chemotherapy sensitization. This approach signifies the potential of deep learning in design of intelligent and targeting drug delivery systems.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102668"},"PeriodicalIF":13.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000404","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited tumor targeting capacity of conventional liposomes compromises their clinical outcomes in tumor therapy. Although ligand-based liposomes show promise for improved tumor targeting efficiency, their transition to clinical use is impeded by the complexity of necessary ligand modifications on liposomal membranes. Certain bifunctional natural products, offering both liposomal membrane-regulating and tumor-targeting ligands properties, have shown tumor targeting potential after prepared into liposomes without the need for ligands synthesis, but their discovery has been hindered by the constraints of conventional screening methods. Here, we propose combining deep learning with wet experimentation for rapid discovery of new bifunctional ligands. Utilizing pre-trained geometric-aware neural networks, we simultaneously modeled predictions for membrane-regulating and glucose transporter 1-ligand functions. The trained models identified nine top candidates from > 300,000 natural products, six of which demonstrated the anticipated dual functionality upon experimental validation. The lead liposome, Ilexgenin A (Ile)-based liposome, demonstrated superior tumor-targeting and anti-tumor effect compared to the existing bifunctional ligand-based liposome. Further analysis elucidated Ile's mechanisms in immunoregulation and chemotherapy sensitization. This approach signifies the potential of deep learning in design of intelligent and targeting drug delivery systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Reticular photothermal traps enabling transparent coatings with exceptional all-day icephobicity Orally administered hydrogel containing polyphenol@halloysite clay for probiotic delivery and treatment of inflammatory bowel disease Maintaining gut microbiota micro-environment homeostasis via silver-nanocubes for ameliorating estrogen deficiency-induced osteoporosis Dopamine-evolved hollow mesoporous nanospheres anchoring Mn-Cu dual single-atoms for NIR-II reinforced catalytic therapy cGAS-STING-activating nanoreactors with tumor-localized thrombosis- and lipid peroxidation-inducing capacity for combination cancer enzymes and immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1