Jun Wang , Shuang Liu , Jiating Xu , Qiang Wang , Chunsheng Li , Jin Ye , Yong Lu , Yuchi Wang , Jun Cao , Chaorong Li , Piaoping Yang , Jun Lin
{"title":"Dopamine-evolved hollow mesoporous nanospheres anchoring Mn-Cu dual single-atoms for NIR-II reinforced catalytic therapy","authors":"Jun Wang , Shuang Liu , Jiating Xu , Qiang Wang , Chunsheng Li , Jin Ye , Yong Lu , Yuchi Wang , Jun Cao , Chaorong Li , Piaoping Yang , Jun Lin","doi":"10.1016/j.nantod.2025.102674","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom nanozymes (SAzymes) have emerged as promising candidates for tumor catalytic therapy. However, the challenge of a single catalytic site managing multiple catalytic reactions and intermediates restricts further enhancement of catalytic activity. Herein, we designed and synthesized a self-reinforcing nanocatalyst (termed CaO<sub>2</sub>@P-DAzyme), featuring dual metal active sites embedded on N-doped hollow mesoporous carbon spheres, loaded with CaO<sub>2</sub> and modified with polyethylene glycol, to achieve intrinsic triple enzyme-like (peroxidase, catalase, and oxidase) activity for tumor catalytic therapy. Density functional theory calculations revealed that the increased electron density around the Mn atom, attributed to the introduction of Cu, imparts CaO<sub>2</sub>@P-DAzyme with a minimal H<sub>2</sub>O<sub>2</sub> adsorption energy (-0.118 eV), resulting in a higher <em>V</em><sub>max</sub> (2.37 × 10<sup>−7</sup> M s<sup>−1</sup>) and lower <em>K</em><sub>m</sub> (2.57 mM) compared to SAzyme-Cu (<em>V</em><sub>max</sub> = 1.45 × 10<sup>−7</sup> M s<sup>−1</sup>, <em>K</em><sub>m</sub> = 6.57 mM) and SAzyme-Mn (<em>V</em><sub>max</sub> = 1.82 ×10<sup>−7</sup> M s<sup>−1</sup>, <em>K</em><sub>m</sub> = 4.46 mM). Additionally, the hollow mesoporous structure enhances the exposure of active sites, improves H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> adsorption, and allows CaO<sub>2</sub> loading to facilitate H<sub>2</sub>O<sub>2</sub> self-supplementation and hypoxia relief, further amplifying the triple enzyme-like activities of CaO<sub>2</sub>@P-DAzyme. Moreover, the high photothermal conversion efficiency (51.95 %) of CaO<sub>2</sub>@P-DAzyme in the near-infrared-II region (NIR-II) window induced photothermal therapy (PTT) to augment the catalytic efficiency of the dual metal active sites. Overall, CaO<sub>2</sub>@P-DAzyme represents a promising approach for NIR-II-triggered and self-reinforcing PTT-catalytic therapy, offering a viable strategy for designing diverse SAzymes with enhanced catalytic activities for cancer therapy.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102674"},"PeriodicalIF":13.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom nanozymes (SAzymes) have emerged as promising candidates for tumor catalytic therapy. However, the challenge of a single catalytic site managing multiple catalytic reactions and intermediates restricts further enhancement of catalytic activity. Herein, we designed and synthesized a self-reinforcing nanocatalyst (termed CaO2@P-DAzyme), featuring dual metal active sites embedded on N-doped hollow mesoporous carbon spheres, loaded with CaO2 and modified with polyethylene glycol, to achieve intrinsic triple enzyme-like (peroxidase, catalase, and oxidase) activity for tumor catalytic therapy. Density functional theory calculations revealed that the increased electron density around the Mn atom, attributed to the introduction of Cu, imparts CaO2@P-DAzyme with a minimal H2O2 adsorption energy (-0.118 eV), resulting in a higher Vmax (2.37 × 10−7 M s−1) and lower Km (2.57 mM) compared to SAzyme-Cu (Vmax = 1.45 × 10−7 M s−1, Km = 6.57 mM) and SAzyme-Mn (Vmax = 1.82 ×10−7 M s−1, Km = 4.46 mM). Additionally, the hollow mesoporous structure enhances the exposure of active sites, improves H2O2 and O2 adsorption, and allows CaO2 loading to facilitate H2O2 self-supplementation and hypoxia relief, further amplifying the triple enzyme-like activities of CaO2@P-DAzyme. Moreover, the high photothermal conversion efficiency (51.95 %) of CaO2@P-DAzyme in the near-infrared-II region (NIR-II) window induced photothermal therapy (PTT) to augment the catalytic efficiency of the dual metal active sites. Overall, CaO2@P-DAzyme represents a promising approach for NIR-II-triggered and self-reinforcing PTT-catalytic therapy, offering a viable strategy for designing diverse SAzymes with enhanced catalytic activities for cancer therapy.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.