Monitoring dynamics in ear-leaf physiology during maize grain filling: genotype and nitrogen impact on source–sink relations and yield

IF 2.4 4区 生物学 Q2 PLANT SCIENCES Acta Physiologiae Plantarum Pub Date : 2025-02-12 DOI:10.1007/s11738-025-03775-8
Sammy Abo-Hamed, Eman M. Elghareeb, Omar El-Shahaby, Farag Ibraheem
{"title":"Monitoring dynamics in ear-leaf physiology during maize grain filling: genotype and nitrogen impact on source–sink relations and yield","authors":"Sammy Abo-Hamed,&nbsp;Eman M. Elghareeb,&nbsp;Omar El-Shahaby,&nbsp;Farag Ibraheem","doi":"10.1007/s11738-025-03775-8","DOIUrl":null,"url":null,"abstract":"<div><p>During maize grain filling, effective coordination between a high source capacity and a robust sink significantly enhances yield. These source–sink relationships are primarily influenced by genotype and nitrogen availability, and achieving a balance between them has been a challenge in modern maize hybrids. In this study, three maize hybrids (B73 × Mo17, B73 × Sids7, and B73 × NC358), sharing B73 as the female parent, were produced, field-grown, and maintained till maturity under limited and sufficient soil nitrogen. The impact of the developing reproductive sink on growth, yield, and dynamic changes in ear-leaf physiology was monitored at 0, 5, 10, 15, and 20 days after pollination. Under limited and adequate N conditions, B73 × NC358 outperformed B73 × Mo17 and B73 × Sids7 in yield and most tested traits. The enhanced yield in B73 × NC358 was associated with increased sink-strength traits and improved source capacity-related morpho- physiological characteristics. As grain filling progressed, B73 × NC358 consistently demonstrated higher biomass accumulation, leaf nitrogen, stover nitrogen, chlorophyll content, total soluble proteins, and elevated activities of nitrate reductase (NR) and glutamine synthetase (GS) compared to the other hybrids. Nitrogen limitation curtails grain yield, growth, and leaf metabolites; however, it induces starch accumulation and increased protease and asparaginase (ASNase) activities in all hybrids. Our findings suggest that B73 × NC358 optimizes leaf nitrogen and balances source capacity and sink strength to enhance biomass, nitrogen use efficiency (NUE), and grain yield. The alleles from B73 and NC358 interact effectively to support a stay-green-like phenotype, promoting growth and grain yield across nitrogen conditions.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11738-025-03775-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03775-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During maize grain filling, effective coordination between a high source capacity and a robust sink significantly enhances yield. These source–sink relationships are primarily influenced by genotype and nitrogen availability, and achieving a balance between them has been a challenge in modern maize hybrids. In this study, three maize hybrids (B73 × Mo17, B73 × Sids7, and B73 × NC358), sharing B73 as the female parent, were produced, field-grown, and maintained till maturity under limited and sufficient soil nitrogen. The impact of the developing reproductive sink on growth, yield, and dynamic changes in ear-leaf physiology was monitored at 0, 5, 10, 15, and 20 days after pollination. Under limited and adequate N conditions, B73 × NC358 outperformed B73 × Mo17 and B73 × Sids7 in yield and most tested traits. The enhanced yield in B73 × NC358 was associated with increased sink-strength traits and improved source capacity-related morpho- physiological characteristics. As grain filling progressed, B73 × NC358 consistently demonstrated higher biomass accumulation, leaf nitrogen, stover nitrogen, chlorophyll content, total soluble proteins, and elevated activities of nitrate reductase (NR) and glutamine synthetase (GS) compared to the other hybrids. Nitrogen limitation curtails grain yield, growth, and leaf metabolites; however, it induces starch accumulation and increased protease and asparaginase (ASNase) activities in all hybrids. Our findings suggest that B73 × NC358 optimizes leaf nitrogen and balances source capacity and sink strength to enhance biomass, nitrogen use efficiency (NUE), and grain yield. The alleles from B73 and NC358 interact effectively to support a stay-green-like phenotype, promoting growth and grain yield across nitrogen conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
期刊最新文献
Retraction Note: Effects of cryptogein gene on growth, phenotype and secondary metabolite accumulation in co-transformed roots and plants of Tylophora indica Monitoring dynamics in ear-leaf physiology during maize grain filling: genotype and nitrogen impact on source–sink relations and yield Salt tolerance mechanisms in five Asteraceae species: seed germination and seedling growth, cellular damage, enzymatic and non-enzymatic antioxidants Transcriptome analysis of the taproot meristem region in contrasting orange carrot breeding lines under varying levels of drought stress Characterization, expression and interactive proteins analysis of BjuB022815 in B. juncea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1