Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet

IF 4.5 2区 生物学 Q2 CELL BIOLOGY Journal of Cellular Physiology Pub Date : 2025-02-12 DOI:10.1002/jcp.31510
Adrian Sowka, Volodymyr V. Balatskyi, Viktor O. Navrulin, James M. Ntambi, Pawel Dobrzyn
{"title":"Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet","authors":"Adrian Sowka,&nbsp;Volodymyr V. Balatskyi,&nbsp;Viktor O. Navrulin,&nbsp;James M. Ntambi,&nbsp;Pawel Dobrzyn","doi":"10.1002/jcp.31510","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The dysregulation of perivascular adipose tissue (PVAT) is a key contributor to obesity-induced vascular dysfunction. Mouse periaortic adipose tissue is divided into two parts: thoracic perivascular adipose tissue (TPVAT) and abdominal perivascular adipose tissue (APVAT). These two parts have different physiological properties, which translate into different effects on the vascular wall in the onset of metabolic syndrome. Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the synthesis of monounsaturated fatty acids and has been shown to play an important role in metabolic syndrome, including vascular homeostasis. Despite a considerable focus on the role of SCD1 in the development of vascular disorders, there is currently a lack of knowledge of the relationship between SCD1 and PVAT. The present study investigated effects of SCD1 deficiency on lipolysis, β-oxidation, mitochondrial dynamics, and inflammation in mouse TPVAT and APVAT under high-fat diet (HFD) feeding conditions. We found lower triglyceride levels in PVAT in SCD1<sup>−/−</sup> mice both in vitro and in vivo compared with wildtype perivascular adipocytes, attributable to activated lipolysis and β-oxidation. Moreover, PVAT in HFD-fed SCD1<sup>−/−</sup> mice was characterized by higher levels of oxidative phosphorylation complexes and mitochondrial respiratory potential and alterations of mitochondrial morphology compared with wildtype mice. Furthermore, TPVAT and APVAT in SCD1<sup>−/−</sup> mice showed signs of greater pro-inflammatory macrophage polarization and higher inflammatory markers that were induced by a HFD. This may be related to the accumulation free fatty acids and diacylglycerols, which are enriched in saturated fatty acids. These findings elucidate the role of SCD1 in maintaining vascular integrity.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31510","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dysregulation of perivascular adipose tissue (PVAT) is a key contributor to obesity-induced vascular dysfunction. Mouse periaortic adipose tissue is divided into two parts: thoracic perivascular adipose tissue (TPVAT) and abdominal perivascular adipose tissue (APVAT). These two parts have different physiological properties, which translate into different effects on the vascular wall in the onset of metabolic syndrome. Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the synthesis of monounsaturated fatty acids and has been shown to play an important role in metabolic syndrome, including vascular homeostasis. Despite a considerable focus on the role of SCD1 in the development of vascular disorders, there is currently a lack of knowledge of the relationship between SCD1 and PVAT. The present study investigated effects of SCD1 deficiency on lipolysis, β-oxidation, mitochondrial dynamics, and inflammation in mouse TPVAT and APVAT under high-fat diet (HFD) feeding conditions. We found lower triglyceride levels in PVAT in SCD1−/− mice both in vitro and in vivo compared with wildtype perivascular adipocytes, attributable to activated lipolysis and β-oxidation. Moreover, PVAT in HFD-fed SCD1−/− mice was characterized by higher levels of oxidative phosphorylation complexes and mitochondrial respiratory potential and alterations of mitochondrial morphology compared with wildtype mice. Furthermore, TPVAT and APVAT in SCD1−/− mice showed signs of greater pro-inflammatory macrophage polarization and higher inflammatory markers that were induced by a HFD. This may be related to the accumulation free fatty acids and diacylglycerols, which are enriched in saturated fatty acids. These findings elucidate the role of SCD1 in maintaining vascular integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
期刊最新文献
Molecular Mechanisms and Therapeutic Implications of Long Non-coding RNAs in Cutaneous Biology and Disease Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet Correction to “Effects of Photoperiod on Morphology and Function in Testis and Epididymis of Cricetulus Barabensis” Proarrhythmic Lipid Inflammatory Mediators: Mechanisms in Obesity Arrhythmias Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1