Exploring the Impact of Curcumin and Carbon Nanotubes on BetaAmyloid Peptide Dimer: Insights from Molecular Dynamics Simulation and Density Functional Theory Methods.
{"title":"Exploring the Impact of Curcumin and Carbon Nanotubes on BetaAmyloid Peptide Dimer: Insights from Molecular Dynamics Simulation and Density Functional Theory Methods.","authors":"Elham Mohammadhassani, Mohammad Reza Bozorgmehr","doi":"10.2174/0113892010333267250124042859","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>At the molecular level, the accumulation of beta-amyloid peptide is one of the important mechanisms in the formation of amyloid plaques. These plaques, in turn, are considered one of the important factors in the development of Alzheimer's disease. Therefore, it is important to study the factors affecting beta-amyloid peptides. This study aimed to investigate the impact of curcumin on the structure of beta-amyloid peptide dimers and how carbon nanotubes influence this interaction. The research focused on understanding the molecular dynamics and structural changes induced by curcumin to reduce beta-amyloid toxicity.</p><p><strong>Background: </strong>Curcumin, a phenolic compound, is known for its ability to prevent the aggregation of beta-amyloid peptides, which are associated with neurodegenerative diseases. On the other hand, due to the hydrophobic nature of curcumin, its solubility in aqueous media is limited. To overcome this, a carrier is used. Carbon nanotubes are among the carriers of curcumin. Nanotubes are popular candidates for the delivery of effective pharmaceutical compounds due to their unique surface properties and biocompatibility. The use of a carrier affects the study of the mechanism of interaction of curcumin with the peptide, which in turn makes it difficult to study this mechanism. Thus, despite its recognized inhibitory action on beta-amyloid aggregation, there is limited understanding of its precise effects on the peptide's structure. This study addresses this gap by employing molecular dynamics simulations and density functional theory methods.</p><p><strong>Objective: </strong>The objective of this study was to elucidate the structural effects of curcumin on betaamyloid peptide dimers and assess the modifying role of carbon nanotubes using computational methods.</p><p><strong>Method: </strong>The effect of curcumin on beta-amyloid peptide dimers was studied using molecular dynamics simulations and density functional theory. The simulations were conducted both in the presence and absence of carbon nanotubes to assess their influence on curcumin's activity and the structural stability of the peptide.</p><p><strong>Results: </strong>The presence of curcumin and carbon nanotubes induced relative instability in betaamyloid dimers. Curcumin exhibited stronger interactions with the N-terminal and C-terminal regions of the peptide than with the middle section. It also reduced the toxicity of the peptide by particularly affecting the salt bridge and the arrangement of Phe19, Ile31, and Leu34 residues. Carbon nanotubes mitigated curcumin's effects on the peptide, altering curcumin's behavior by reducing its activity, but increasing its solvation energy.</p><p><strong>Conclusion: </strong>Curcumin plays a significant role in destabilizing beta-amyloid dimers and reducing their toxicity, with its effect being modulated by the presence of carbon nanotubes. This dual influence highlights the potential of using curcumin, alongside nanomaterials, in therapeutic strategies for neurodegenerative diseases. This study provided valuable insights into the molecular interactions among curcumin, beta-amyloid peptides, and carbon nanotubes. These findings can contribute to the development of more effective treatments targeting amyloid-related toxicity in neurodegenerative conditions.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010333267250124042859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: At the molecular level, the accumulation of beta-amyloid peptide is one of the important mechanisms in the formation of amyloid plaques. These plaques, in turn, are considered one of the important factors in the development of Alzheimer's disease. Therefore, it is important to study the factors affecting beta-amyloid peptides. This study aimed to investigate the impact of curcumin on the structure of beta-amyloid peptide dimers and how carbon nanotubes influence this interaction. The research focused on understanding the molecular dynamics and structural changes induced by curcumin to reduce beta-amyloid toxicity.
Background: Curcumin, a phenolic compound, is known for its ability to prevent the aggregation of beta-amyloid peptides, which are associated with neurodegenerative diseases. On the other hand, due to the hydrophobic nature of curcumin, its solubility in aqueous media is limited. To overcome this, a carrier is used. Carbon nanotubes are among the carriers of curcumin. Nanotubes are popular candidates for the delivery of effective pharmaceutical compounds due to their unique surface properties and biocompatibility. The use of a carrier affects the study of the mechanism of interaction of curcumin with the peptide, which in turn makes it difficult to study this mechanism. Thus, despite its recognized inhibitory action on beta-amyloid aggregation, there is limited understanding of its precise effects on the peptide's structure. This study addresses this gap by employing molecular dynamics simulations and density functional theory methods.
Objective: The objective of this study was to elucidate the structural effects of curcumin on betaamyloid peptide dimers and assess the modifying role of carbon nanotubes using computational methods.
Method: The effect of curcumin on beta-amyloid peptide dimers was studied using molecular dynamics simulations and density functional theory. The simulations were conducted both in the presence and absence of carbon nanotubes to assess their influence on curcumin's activity and the structural stability of the peptide.
Results: The presence of curcumin and carbon nanotubes induced relative instability in betaamyloid dimers. Curcumin exhibited stronger interactions with the N-terminal and C-terminal regions of the peptide than with the middle section. It also reduced the toxicity of the peptide by particularly affecting the salt bridge and the arrangement of Phe19, Ile31, and Leu34 residues. Carbon nanotubes mitigated curcumin's effects on the peptide, altering curcumin's behavior by reducing its activity, but increasing its solvation energy.
Conclusion: Curcumin plays a significant role in destabilizing beta-amyloid dimers and reducing their toxicity, with its effect being modulated by the presence of carbon nanotubes. This dual influence highlights the potential of using curcumin, alongside nanomaterials, in therapeutic strategies for neurodegenerative diseases. This study provided valuable insights into the molecular interactions among curcumin, beta-amyloid peptides, and carbon nanotubes. These findings can contribute to the development of more effective treatments targeting amyloid-related toxicity in neurodegenerative conditions.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.