{"title":"Lysine acetylation in cyanobacteria: emerging mechanisms and functions.","authors":"Xin Liu, Mingkun Yang, Feng Ge, Jindong Zhao","doi":"10.1042/BST20241037","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are ancient and abundant photosynthetic prokaryotes that play crucial roles in global carbon and nitrogen cycles. They exist in a variety of environments and have been used extensively as model organisms for studies of photosynthesis and environmental adaptation. Lysine acetylation (Kac), a widespread and evolutionarily conserved protein posttranslational modification, is reversibly catalyzed by lysine acetyltransferases (KAT) and lysine deacetylases (KDACs). Over the past decade, a growing number of acetylated proteins have been identified in cyanobacteria, and Kac is increasingly recognized as having essential roles in many cellular processes, such as photosynthesis, energy metabolism, and stress responses. Recently, cGNAT2 and CddA were identified as KAT and KDAC in the model cyanobacterium Synechococcus sp. PCC 7002, respectively. The identified Kac regulatory enzymes provide novel insight into the mechanisms that globally regulate photosynthesis in cyanobacteria and potentially other photosynthetic organisms. This review summarizes recent progress in our understanding of the functions and mechanisms of lysine acetylation in Cyanobacteria. The challenges and future perspectives in this field are also discussed.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20241037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria are ancient and abundant photosynthetic prokaryotes that play crucial roles in global carbon and nitrogen cycles. They exist in a variety of environments and have been used extensively as model organisms for studies of photosynthesis and environmental adaptation. Lysine acetylation (Kac), a widespread and evolutionarily conserved protein posttranslational modification, is reversibly catalyzed by lysine acetyltransferases (KAT) and lysine deacetylases (KDACs). Over the past decade, a growing number of acetylated proteins have been identified in cyanobacteria, and Kac is increasingly recognized as having essential roles in many cellular processes, such as photosynthesis, energy metabolism, and stress responses. Recently, cGNAT2 and CddA were identified as KAT and KDAC in the model cyanobacterium Synechococcus sp. PCC 7002, respectively. The identified Kac regulatory enzymes provide novel insight into the mechanisms that globally regulate photosynthesis in cyanobacteria and potentially other photosynthetic organisms. This review summarizes recent progress in our understanding of the functions and mechanisms of lysine acetylation in Cyanobacteria. The challenges and future perspectives in this field are also discussed.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.