{"title":"PIEZO channels as multimodal mechanotransducers.","authors":"Jérôme J Lacroix, Tharaka D Wijerathne","doi":"10.1042/BST20240419","DOIUrl":null,"url":null,"abstract":"<p><p>All living beings experience a wide range of endogenous and exogenous mechanical forces. The ability to detect these forces and rapidly convert them into specific biological signals is essential to a wide range of physiological processes. In vertebrates, these fundamental tasks are predominantly achieved by two related mechanosensitive ion channels called PIEZO1 and PIEZO2. PIEZO channels are thought to sense mechanical forces through flexible transmembrane blade-like domains. Structural studies indeed show that these mechanosensory domains adopt a curved conformation in a resting membrane but become flattened in a membrane under tension, promoting an open state. Yet, recent studies suggest the intriguing possibility that distinct mechanical stimuli activate PIEZO channels through discrete molecular rearrangements of these domains. In addition, biological signals downstream of PIEZO channel activation vary as a function of the mechanical stimulus and of the cellular context. These unique features could explain how PIEZOs confer cells the ability to differentially interpret a complex landscape of mechanical cues.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240419","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
All living beings experience a wide range of endogenous and exogenous mechanical forces. The ability to detect these forces and rapidly convert them into specific biological signals is essential to a wide range of physiological processes. In vertebrates, these fundamental tasks are predominantly achieved by two related mechanosensitive ion channels called PIEZO1 and PIEZO2. PIEZO channels are thought to sense mechanical forces through flexible transmembrane blade-like domains. Structural studies indeed show that these mechanosensory domains adopt a curved conformation in a resting membrane but become flattened in a membrane under tension, promoting an open state. Yet, recent studies suggest the intriguing possibility that distinct mechanical stimuli activate PIEZO channels through discrete molecular rearrangements of these domains. In addition, biological signals downstream of PIEZO channel activation vary as a function of the mechanical stimulus and of the cellular context. These unique features could explain how PIEZOs confer cells the ability to differentially interpret a complex landscape of mechanical cues.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.