A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-11 DOI:10.1186/s12911-024-02828-1
Yingchun He, Yi-Haw Jan, Fan Yang, Yunru Ma, Chun Pei
{"title":"A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies.","authors":"Yingchun He, Yi-Haw Jan, Fan Yang, Yunru Ma, Chun Pei","doi":"10.1186/s12911-024-02828-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants' cycling movement. Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants' skeletal keypoints from the recorded movement video. Spearman's rank correlation analysis, intraclass correlation coefficient (ICC), error analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture systems, including the peak frequency of acceleration, transition time point between movement statuses, and the complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm showed excellent consistency (ICC<sub>1,3</sub>=0.988) between the two methods when estimating the peak acceleration frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong correlation (r > 0.70) and good agreement (ICC<sub>2,1</sub>>0.750). Additionally, error values were relatively low (MAE = 0.001 and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and signal processing techniques, the proposed method is designed for individualized motor function evaluation in home or community-based settings.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"71"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02828-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants' cycling movement. Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants' skeletal keypoints from the recorded movement video. Spearman's rank correlation analysis, intraclass correlation coefficient (ICC), error analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture systems, including the peak frequency of acceleration, transition time point between movement statuses, and the complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm showed excellent consistency (ICC1,3=0.988) between the two methods when estimating the peak acceleration frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong correlation (r > 0.70) and good agreement (ICC2,1>0.750). Additionally, error values were relatively low (MAE = 0.001 and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and signal processing techniques, the proposed method is designed for individualized motor function evaluation in home or community-based settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review. Correction: Causal analysis for multivariate integrated clinical and environmental exposures data. Factors contributing to chronic ankle instability in parcel delivery workers based on machine learning techniques. Pelvic pain & endometriosis: the development of a patient-centred e-health resource for those affected by endometriosis-associated dyspareunia. Analytical validation of Exandra: a clinical decision support system for promoting guideline-directed therapy of type-2 diabetes in primary care - a collaborative study with experts from Diabetes Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1