Yingchun He, Yi-Haw Jan, Fan Yang, Yunru Ma, Chun Pei
{"title":"A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies.","authors":"Yingchun He, Yi-Haw Jan, Fan Yang, Yunru Ma, Chun Pei","doi":"10.1186/s12911-024-02828-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants' cycling movement. Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants' skeletal keypoints from the recorded movement video. Spearman's rank correlation analysis, intraclass correlation coefficient (ICC), error analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture systems, including the peak frequency of acceleration, transition time point between movement statuses, and the complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm showed excellent consistency (ICC<sub>1,3</sub>=0.988) between the two methods when estimating the peak acceleration frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong correlation (r > 0.70) and good agreement (ICC<sub>2,1</sub>>0.750). Additionally, error values were relatively low (MAE = 0.001 and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and signal processing techniques, the proposed method is designed for individualized motor function evaluation in home or community-based settings.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"71"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02828-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants' cycling movement. Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants' skeletal keypoints from the recorded movement video. Spearman's rank correlation analysis, intraclass correlation coefficient (ICC), error analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture systems, including the peak frequency of acceleration, transition time point between movement statuses, and the complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm showed excellent consistency (ICC1,3=0.988) between the two methods when estimating the peak acceleration frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong correlation (r > 0.70) and good agreement (ICC2,1>0.750). Additionally, error values were relatively low (MAE = 0.001 and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and signal processing techniques, the proposed method is designed for individualized motor function evaluation in home or community-based settings.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.