Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-13 DOI:10.1186/s12911-025-02870-7
Zhenli Chen, Jie Hao, Haixia Sun, Min Li, Yuan Zhang, Qing Qian
{"title":"Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review.","authors":"Zhenli Chen, Jie Hao, Haixia Sun, Min Li, Yuan Zhang, Qing Qian","doi":"10.1186/s12911-025-02870-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic Obstructive Pulmonary Disease (COPD) represents a significant global health challenge, placing considerable burdens on healthcare systems. The rise of digital health technologies (DHTs) and artificial intelligence (AI) algorithms offers new opportunities to improve COPD predictive capabilities, diagnostic accuracy, and patient management. This systematic review explores the types of data in COPD under DHTs, the AI algorithms employed for data analysis, and identifies key application areas reported in the literature.</p><p><strong>Methods: </strong>A systematic search was conducted in PubMed and Web of Science for studies published up to December 2024 that applied AI algorithms in digital health for COPD management. Inclusion criteria focused on original research utilizing AI algorithms and digital health technologies for COPD, while review articles were excluded. Two independent reviewers screened the studies, resolving discrepancies through consensus.</p><p><strong>Results: </strong>From an initial pool of 265 studies, 41 met the inclusion criteria. Analysis of these studies highlighted a diverse range of data types and modalities collected from DHTs in the COPD context, including clinical data, patient-reported outcomes, and environmental/lifestyle data. Machine learning (ML) algorithms were employed in 34 studies, and deep learning (DL) algorithms in 16. Support vector machines and boosting were the most frequently used ML models, while deep neural networks (DNN) and convolutional neural networks (CNN) were the most commonly used DL models. The review identified three key application domains for AI in COPD: screening and diagnosis (10 studies), exacerbation prediction (22 studies), and patient monitoring (9 studies). Disease progression prediction was a prevalent focus across three domains, with promising accuracy and performance metrics reported.</p><p><strong>Conclusions: </strong>Digital health technologies and AI algorithms have a wide range of applications and promise for COPD management. ML models, in particularly, show great potential in improving digital health solutions for COPD. Future research should focus on enhancing global collaboration to explore the cost-effectiveness and data-sharing capabilities of DHTs, enhancing the interpretability of AI models, and validating these algorithms through clinical trials to facilitate their safe integration into the routine COPD management.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"77"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02870-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) represents a significant global health challenge, placing considerable burdens on healthcare systems. The rise of digital health technologies (DHTs) and artificial intelligence (AI) algorithms offers new opportunities to improve COPD predictive capabilities, diagnostic accuracy, and patient management. This systematic review explores the types of data in COPD under DHTs, the AI algorithms employed for data analysis, and identifies key application areas reported in the literature.

Methods: A systematic search was conducted in PubMed and Web of Science for studies published up to December 2024 that applied AI algorithms in digital health for COPD management. Inclusion criteria focused on original research utilizing AI algorithms and digital health technologies for COPD, while review articles were excluded. Two independent reviewers screened the studies, resolving discrepancies through consensus.

Results: From an initial pool of 265 studies, 41 met the inclusion criteria. Analysis of these studies highlighted a diverse range of data types and modalities collected from DHTs in the COPD context, including clinical data, patient-reported outcomes, and environmental/lifestyle data. Machine learning (ML) algorithms were employed in 34 studies, and deep learning (DL) algorithms in 16. Support vector machines and boosting were the most frequently used ML models, while deep neural networks (DNN) and convolutional neural networks (CNN) were the most commonly used DL models. The review identified three key application domains for AI in COPD: screening and diagnosis (10 studies), exacerbation prediction (22 studies), and patient monitoring (9 studies). Disease progression prediction was a prevalent focus across three domains, with promising accuracy and performance metrics reported.

Conclusions: Digital health technologies and AI algorithms have a wide range of applications and promise for COPD management. ML models, in particularly, show great potential in improving digital health solutions for COPD. Future research should focus on enhancing global collaboration to explore the cost-effectiveness and data-sharing capabilities of DHTs, enhancing the interpretability of AI models, and validating these algorithms through clinical trials to facilitate their safe integration into the routine COPD management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Machine learning via DARTS-Optimized MobileViT models for pancreatic Cancer diagnosis with graph-based deep learning. Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review. Correction: Causal analysis for multivariate integrated clinical and environmental exposures data. Factors contributing to chronic ankle instability in parcel delivery workers based on machine learning techniques. Pelvic pain & endometriosis: the development of a patient-centred e-health resource for those affected by endometriosis-associated dyspareunia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1