Zhenli Chen, Jie Hao, Haixia Sun, Min Li, Yuan Zhang, Qing Qian
{"title":"Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review.","authors":"Zhenli Chen, Jie Hao, Haixia Sun, Min Li, Yuan Zhang, Qing Qian","doi":"10.1186/s12911-025-02870-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic Obstructive Pulmonary Disease (COPD) represents a significant global health challenge, placing considerable burdens on healthcare systems. The rise of digital health technologies (DHTs) and artificial intelligence (AI) algorithms offers new opportunities to improve COPD predictive capabilities, diagnostic accuracy, and patient management. This systematic review explores the types of data in COPD under DHTs, the AI algorithms employed for data analysis, and identifies key application areas reported in the literature.</p><p><strong>Methods: </strong>A systematic search was conducted in PubMed and Web of Science for studies published up to December 2024 that applied AI algorithms in digital health for COPD management. Inclusion criteria focused on original research utilizing AI algorithms and digital health technologies for COPD, while review articles were excluded. Two independent reviewers screened the studies, resolving discrepancies through consensus.</p><p><strong>Results: </strong>From an initial pool of 265 studies, 41 met the inclusion criteria. Analysis of these studies highlighted a diverse range of data types and modalities collected from DHTs in the COPD context, including clinical data, patient-reported outcomes, and environmental/lifestyle data. Machine learning (ML) algorithms were employed in 34 studies, and deep learning (DL) algorithms in 16. Support vector machines and boosting were the most frequently used ML models, while deep neural networks (DNN) and convolutional neural networks (CNN) were the most commonly used DL models. The review identified three key application domains for AI in COPD: screening and diagnosis (10 studies), exacerbation prediction (22 studies), and patient monitoring (9 studies). Disease progression prediction was a prevalent focus across three domains, with promising accuracy and performance metrics reported.</p><p><strong>Conclusions: </strong>Digital health technologies and AI algorithms have a wide range of applications and promise for COPD management. ML models, in particularly, show great potential in improving digital health solutions for COPD. Future research should focus on enhancing global collaboration to explore the cost-effectiveness and data-sharing capabilities of DHTs, enhancing the interpretability of AI models, and validating these algorithms through clinical trials to facilitate their safe integration into the routine COPD management.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"77"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02870-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD) represents a significant global health challenge, placing considerable burdens on healthcare systems. The rise of digital health technologies (DHTs) and artificial intelligence (AI) algorithms offers new opportunities to improve COPD predictive capabilities, diagnostic accuracy, and patient management. This systematic review explores the types of data in COPD under DHTs, the AI algorithms employed for data analysis, and identifies key application areas reported in the literature.
Methods: A systematic search was conducted in PubMed and Web of Science for studies published up to December 2024 that applied AI algorithms in digital health for COPD management. Inclusion criteria focused on original research utilizing AI algorithms and digital health technologies for COPD, while review articles were excluded. Two independent reviewers screened the studies, resolving discrepancies through consensus.
Results: From an initial pool of 265 studies, 41 met the inclusion criteria. Analysis of these studies highlighted a diverse range of data types and modalities collected from DHTs in the COPD context, including clinical data, patient-reported outcomes, and environmental/lifestyle data. Machine learning (ML) algorithms were employed in 34 studies, and deep learning (DL) algorithms in 16. Support vector machines and boosting were the most frequently used ML models, while deep neural networks (DNN) and convolutional neural networks (CNN) were the most commonly used DL models. The review identified three key application domains for AI in COPD: screening and diagnosis (10 studies), exacerbation prediction (22 studies), and patient monitoring (9 studies). Disease progression prediction was a prevalent focus across three domains, with promising accuracy and performance metrics reported.
Conclusions: Digital health technologies and AI algorithms have a wide range of applications and promise for COPD management. ML models, in particularly, show great potential in improving digital health solutions for COPD. Future research should focus on enhancing global collaboration to explore the cost-effectiveness and data-sharing capabilities of DHTs, enhancing the interpretability of AI models, and validating these algorithms through clinical trials to facilitate their safe integration into the routine COPD management.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.