João Miguel Alves, Daniel Matos, Tiago Martins, Diogo Cavaco, Pedro Carmo, Pedro Galvão, Francisco Moscoso Costa, Francisco Morgado, António Miguel Ferreira, Pedro Freitas, Cláudia Camila Dias, Pedro Pereira Rodrigues, Pedro Adragão
{"title":"Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach.","authors":"João Miguel Alves, Daniel Matos, Tiago Martins, Diogo Cavaco, Pedro Carmo, Pedro Galvão, Francisco Moscoso Costa, Francisco Morgado, António Miguel Ferreira, Pedro Freitas, Cláudia Camila Dias, Pedro Pereira Rodrigues, Pedro Adragão","doi":"10.2196/59380","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorporate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.</p><p><strong>Objective: </strong>This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model's performance using various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance clinical decision-making in the management of AF.</p><p><strong>Methods: </strong>This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness and reliability of the predictions.</p><p><strong>Results: </strong>The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors (age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI 0.603-0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an AUC-ROC of 0.703 (95% CI 0.652-0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an AUC-ROC of 0.752 (95% CI 0.701-0.800). These results indicate that the model can effectively estimate the risk of AF relapse using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.</p><p><strong>Conclusions: </strong>The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy, and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness that makes it suitable for real-world clinical scenarios.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"9 ","pages":"e59380"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorporate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.
Objective: This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model's performance using various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance clinical decision-making in the management of AF.
Methods: This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness and reliability of the predictions.
Results: The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors (age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI 0.603-0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an AUC-ROC of 0.703 (95% CI 0.652-0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an AUC-ROC of 0.752 (95% CI 0.701-0.800). These results indicate that the model can effectively estimate the risk of AF relapse using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.
Conclusions: The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy, and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness that makes it suitable for real-world clinical scenarios.