Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach.

Q2 Medicine JMIR Cardio Pub Date : 2025-02-11 DOI:10.2196/59380
João Miguel Alves, Daniel Matos, Tiago Martins, Diogo Cavaco, Pedro Carmo, Pedro Galvão, Francisco Moscoso Costa, Francisco Morgado, António Miguel Ferreira, Pedro Freitas, Cláudia Camila Dias, Pedro Pereira Rodrigues, Pedro Adragão
{"title":"Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach.","authors":"João Miguel Alves, Daniel Matos, Tiago Martins, Diogo Cavaco, Pedro Carmo, Pedro Galvão, Francisco Moscoso Costa, Francisco Morgado, António Miguel Ferreira, Pedro Freitas, Cláudia Camila Dias, Pedro Pereira Rodrigues, Pedro Adragão","doi":"10.2196/59380","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorporate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.</p><p><strong>Objective: </strong>This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model's performance using various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance clinical decision-making in the management of AF.</p><p><strong>Methods: </strong>This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness and reliability of the predictions.</p><p><strong>Results: </strong>The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors (age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI 0.603-0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an AUC-ROC of 0.703 (95% CI 0.652-0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an AUC-ROC of 0.752 (95% CI 0.701-0.800). These results indicate that the model can effectively estimate the risk of AF relapse using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.</p><p><strong>Conclusions: </strong>The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy, and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness that makes it suitable for real-world clinical scenarios.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"9 ","pages":"e59380"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorporate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.

Objective: This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model's performance using various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance clinical decision-making in the management of AF.

Methods: This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness and reliability of the predictions.

Results: The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors (age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI 0.603-0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an AUC-ROC of 0.703 (95% CI 0.652-0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an AUC-ROC of 0.752 (95% CI 0.701-0.800). These results indicate that the model can effectively estimate the risk of AF relapse using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.

Conclusions: The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy, and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness that makes it suitable for real-world clinical scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Cardio
JMIR Cardio Computer Science-Computer Science Applications
CiteScore
3.50
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊最新文献
Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach. Wearable Electrocardiogram Technology: Help or Hindrance to the Modern Doctor? Technology Readiness Level and Self-Reported Health in Recipients of an Implantable Cardioverter Defibrillator: Cross-Sectional Study. A Medication Management App (Smart-Meds) for Patients After an Acute Coronary Syndrome: Pilot Pre-Post Mixed Methods Study. Causal Inference for Hypertension Prediction With Wearable E lectrocardiogram and P hotoplethysmogram Signals: Feasibility Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1