Applying AI in the Context of the Association Between Device-Based Assessment of Physical Activity and Mental Health: Systematic Review.

IF 5.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES JMIR mHealth and uHealth Pub Date : 2025-03-06 DOI:10.2196/59660
Simon Woll, Dennis Birkenmaier, Gergely Biri, Rebecca Nissen, Luisa Lutz, Marc Schroth, Ulrich W Ebner-Priemer, Marco Giurgiu
{"title":"Applying AI in the Context of the Association Between Device-Based Assessment of Physical Activity and Mental Health: Systematic Review.","authors":"Simon Woll, Dennis Birkenmaier, Gergely Biri, Rebecca Nissen, Luisa Lutz, Marc Schroth, Ulrich W Ebner-Priemer, Marco Giurgiu","doi":"10.2196/59660","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wearable technology is used by consumers worldwide for continuous activity monitoring in daily life but more recently also for classifying or predicting mental health parameters like stress or depression levels. Previous studies identified, based on traditional approaches, that physical activity is a relevant factor in the prevention or management of mental health. However, upcoming artificial intelligence methods have not yet been fully established in the research field of physical activity and mental health.</p><p><strong>Objective: </strong>This systematic review aims to provide a comprehensive overview of studies that integrated passive monitoring of physical activity data measured via wearable technology in machine learning algorithms for the detection, prediction, or classification of mental health states and traits.</p><p><strong>Methods: </strong>We conducted a review of studies processing wearable data to gain insights into mental health parameters. Eligibility criteria were (1) the study uses wearables or smartphones to acquire physical behavior and optionally other sensor measurement data, (2) the study must use machine learning to process the acquired data, and (3) the study had to be published in a peer-reviewed English language journal. Studies were identified via a systematic search in 5 electronic databases.</p><p><strong>Results: </strong>Of 11,057 unique search results, 49 published papers between 2016 and 2023 were included. Most studies examined the connection between wearable sensor data and stress (n=15, 31%) or depression (n=14, 29%). In total, 71% (n=35) of the studies had less than 100 participants, and 47% (n=23) had less than 14 days of data recording. More than half of the studies (n=27, 55%) used step count as movement measurement, and 44% (n=21) used raw accelerometer values. The quality of the studies was assessed, scoring between 0 and 18 points in 9 categories (maximum 2 points per category). On average, studies were rated 6.47 (SD 3.1) points.</p><p><strong>Conclusions: </strong>The use of wearable technology for the detection, prediction, or classification of mental health states and traits is promising and offers a variety of applications across different settings and target groups. However, based on the current state of literature, the application of artificial intelligence cannot realize its full potential mostly due to a lack of methodological shortcomings and data availability. Future research endeavors may focus on the following suggestions to improve the quality of new applications in this context: first, by using raw data instead of already preprocessed data. Second, by using only relevant data based on empirical evidence. In particular, crafting optimal feature sets rather than using many individual detached features and consultation with in-field professionals. Third, by validating and replicating the existing approaches (ie, applying the model to unseen data). Fourth, depending on the research aim (ie, generalization vs personalization) maximizing the sample size or the duration over which data are collected.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e59660"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/59660","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Wearable technology is used by consumers worldwide for continuous activity monitoring in daily life but more recently also for classifying or predicting mental health parameters like stress or depression levels. Previous studies identified, based on traditional approaches, that physical activity is a relevant factor in the prevention or management of mental health. However, upcoming artificial intelligence methods have not yet been fully established in the research field of physical activity and mental health.

Objective: This systematic review aims to provide a comprehensive overview of studies that integrated passive monitoring of physical activity data measured via wearable technology in machine learning algorithms for the detection, prediction, or classification of mental health states and traits.

Methods: We conducted a review of studies processing wearable data to gain insights into mental health parameters. Eligibility criteria were (1) the study uses wearables or smartphones to acquire physical behavior and optionally other sensor measurement data, (2) the study must use machine learning to process the acquired data, and (3) the study had to be published in a peer-reviewed English language journal. Studies were identified via a systematic search in 5 electronic databases.

Results: Of 11,057 unique search results, 49 published papers between 2016 and 2023 were included. Most studies examined the connection between wearable sensor data and stress (n=15, 31%) or depression (n=14, 29%). In total, 71% (n=35) of the studies had less than 100 participants, and 47% (n=23) had less than 14 days of data recording. More than half of the studies (n=27, 55%) used step count as movement measurement, and 44% (n=21) used raw accelerometer values. The quality of the studies was assessed, scoring between 0 and 18 points in 9 categories (maximum 2 points per category). On average, studies were rated 6.47 (SD 3.1) points.

Conclusions: The use of wearable technology for the detection, prediction, or classification of mental health states and traits is promising and offers a variety of applications across different settings and target groups. However, based on the current state of literature, the application of artificial intelligence cannot realize its full potential mostly due to a lack of methodological shortcomings and data availability. Future research endeavors may focus on the following suggestions to improve the quality of new applications in this context: first, by using raw data instead of already preprocessed data. Second, by using only relevant data based on empirical evidence. In particular, crafting optimal feature sets rather than using many individual detached features and consultation with in-field professionals. Third, by validating and replicating the existing approaches (ie, applying the model to unseen data). Fourth, depending on the research aim (ie, generalization vs personalization) maximizing the sample size or the duration over which data are collected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于设备的体育活动评估与心理健康之间的关联中应用人工智能:系统综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR mHealth and uHealth
JMIR mHealth and uHealth Medicine-Health Informatics
CiteScore
12.60
自引率
4.00%
发文量
159
审稿时长
10 weeks
期刊介绍: JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636. The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics. JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.
期刊最新文献
The Role of Environmental Factors in Technology-Assisted Physical Activity Intervention Studies Among Older Adults: Scoping Review. An Actor-Partner Interdependence Mediation Model for Assessing the Association Between Health Literacy and mHealth Use Intention in Dyads of Patients With Chronic Heart Failure and Their Caregivers: Cross-Sectional Study. Applying AI in the Context of the Association Between Device-Based Assessment of Physical Activity and Mental Health: Systematic Review. Impact of a Mobile Money-Based Conditional Cash Transfer Intervention on Health Care Utilization in Southern Madagascar: Mixed-Methods Study. Comparative Effectiveness of Wearable Devices and Built-In Step Counters in Reducing Metabolic Syndrome Risk in South Korea: Population-Based Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1