{"title":"Altered cognitive function in obese patients: relationship to gut flora.","authors":"Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu","doi":"10.1007/s11010-024-05201-y","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05201-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.