Alfredo Caturano, Enes Erul, Roberto Nilo, Davide Nilo, Vincenzo Russo, Luca Rinaldi, Carlo Acierno, Maria Gemelli, Riccardo Ricotta, Ferdinando Carlo Sasso, Antonio Giordano, Caterina Conte, Yüksel Ürün
{"title":"Insulin resistance and cancer: molecular links and clinical perspectives.","authors":"Alfredo Caturano, Enes Erul, Roberto Nilo, Davide Nilo, Vincenzo Russo, Luca Rinaldi, Carlo Acierno, Maria Gemelli, Riccardo Ricotta, Ferdinando Carlo Sasso, Antonio Giordano, Caterina Conte, Yüksel Ürün","doi":"10.1007/s11010-025-05245-8","DOIUrl":null,"url":null,"abstract":"<p><p>The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05245-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.