{"title":"Impact of EEG Reference Schemes on Event-Related Potential Outcomes: A Corollary Discharge Study Using a Talk/Listen Paradigm.","authors":"Subham Samantaray, Nishant Goyal, Muralidharan Kesavan, Ganesan Venkatasubramanian, Anushree Bose, Umesh Shreekantiah, Vanteemar S Sreeraj, Manul Das, Justin Raj, Sujeet Kumar","doi":"10.1007/s10548-025-01103-4","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of an appropriate virtual reference schema is pivotal in determining the outcomes of event-related potential (ERP) studies, particularly within the widely utilized Talk/Listen ERP paradigm, which is employed to non-invasively explore the corollary discharge phenomenon in the speech-auditory system. This research centers on examining the effects of prevalent EEG reference schemas-linked mastoids (LM), common average reference (CAR), and reference electrode standardization technique (REST)-through statistical analysis, statistical parametric scalp mapping (SPSM), and source localization techniques. Our ANOVA findings indicate significant main effects for both the reference and the experimental condition on the amplitude of N1 ERPs. Depending on the reference used, the polarity and amplitude of the N1 ERPs demonstrate systematic variations: LM is associated with pronounced frontocentral activity, whereas both CAR and REST exhibit patterns of frontocentral and occipitotemporal activity. The significance of SPSM results is confined to regions exhibiting prominent N1 activity for each reference schema. Source analysis provides corroborative evidence more aligned with the SPSM results for CAR and REST than for LM, suggesting that results under CAR and REST are more objective and reliable. Therefore, the CAR and REST reference are recommended for future studies involving Talk/Listen ERP paradigms.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"30"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01103-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The selection of an appropriate virtual reference schema is pivotal in determining the outcomes of event-related potential (ERP) studies, particularly within the widely utilized Talk/Listen ERP paradigm, which is employed to non-invasively explore the corollary discharge phenomenon in the speech-auditory system. This research centers on examining the effects of prevalent EEG reference schemas-linked mastoids (LM), common average reference (CAR), and reference electrode standardization technique (REST)-through statistical analysis, statistical parametric scalp mapping (SPSM), and source localization techniques. Our ANOVA findings indicate significant main effects for both the reference and the experimental condition on the amplitude of N1 ERPs. Depending on the reference used, the polarity and amplitude of the N1 ERPs demonstrate systematic variations: LM is associated with pronounced frontocentral activity, whereas both CAR and REST exhibit patterns of frontocentral and occipitotemporal activity. The significance of SPSM results is confined to regions exhibiting prominent N1 activity for each reference schema. Source analysis provides corroborative evidence more aligned with the SPSM results for CAR and REST than for LM, suggesting that results under CAR and REST are more objective and reliable. Therefore, the CAR and REST reference are recommended for future studies involving Talk/Listen ERP paradigms.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.